史上最系统的的竞赛图讲解:学透竞赛图看这一篇就够了!

本文深入探讨了竞赛图的概念,详细解释了兰道定理及其证明,阐述了竞赛图的性质,如拓扑序成链状,并通过举例说明了这些性质在实际问题中的应用,如SCC的分析和哈密顿路径的相关性质。同时,文章提供了相关竞赛题目的解题思路,展示了兰道定理和拓扑序性质在算法竞赛中的实用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

定义

任意两点之前有且仅有一条边的有向图。即有向完全图。

赢的点连向输的点,一条边表示一个胜负关系。

性质

一、兰道定理(竞赛图的判定)

比分序列:将每个点的出度从小到大排序的序列。

定理内容:

设s是图G的比分序列。

G是竞赛图的充要条件为:

1 < = k < = n ∑ i = 1 k s i > = C k 2 1<=k<=n\\ \sum_{i=1}^ks_i>=C_k^2 1<=k<=ni=1ksi>=Ck2

并且k=n时取等。

实质上是:

对于每个点的出度之和总是大于等于下界,并且最后取等,那么图是竞赛图。

定理证明

必要性显然,任意一个竞赛图都满足兰道定理。

充分性证明:

证明对于一个满足兰道定理的比分序列s对应一个竞赛图。

考虑构造法,现有一个所有点i都像j<i连边的竞赛图,比分序列u为0…n-1。

考虑说明调整一定步数之后u能变成s。

u实质上是比分序列前缀和的下界,每一次都能取等。

现在有

1 < = k < = n ∑ i = 1 k s i > = ∑ i = 1 k u i 1<=k<=n \\ \sum_{i=1}^k s_i>=\sum_{i=1}^ku_i 1<=k<=ni=1ksi>=i=1kui

考虑第一步:

在u中找到一个 u i < s i u_i<s_i ui<si的位置i,若找不到说明u,s是同一个序列。

再找到最后一个 u i = u j u_i=u_j ui=uj的位置j,然后在j后找到第一个 u k > s k u_k>s_k

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值