文章目录
定义
任意两点之前有且仅有一条边的有向图。即有向完全图。
赢的点连向输的点,一条边表示一个胜负关系。
性质
一、兰道定理(竞赛图的判定)
比分序列:将每个点的出度从小到大排序的序列。
定理内容:
设s是图G的比分序列。
G是竞赛图的充要条件为:
1 < = k < = n ∑ i = 1 k s i > = C k 2 1<=k<=n\\ \sum_{i=1}^ks_i>=C_k^2 1<=k<=n∑i=1ksi>=Ck2
并且k=n时取等。
实质上是:
对于每个点的出度之和总是大于等于下界,并且最后取等,那么图是竞赛图。
定理证明
必要性显然,任意一个竞赛图都满足兰道定理。
充分性证明:
证明对于一个满足兰道定理的比分序列s对应一个竞赛图。
考虑构造法,现有一个所有点i都像j<i连边的竞赛图,比分序列u为0…n-1。
考虑说明调整一定步数之后u能变成s。
u实质上是比分序列前缀和的下界,每一次都能取等。
现在有
1 < = k < = n ∑ i = 1 k s i > = ∑ i = 1 k u i 1<=k<=n \\ \sum_{i=1}^k s_i>=\sum_{i=1}^ku_i 1<=k<=n∑i=1ksi>=∑i=1kui
考虑第一步:
在u中找到一个 u i < s i u_i<s_i ui<si的位置i,若找不到说明u,s是同一个序列。
再找到最后一个 u i = u j u_i=u_j ui=uj的位置j,然后在j后找到第一个 u k > s k u_k>s_k