Transformer多步时序预测:多变量输入,单变量输出


数据集来源: https://github.com/zhouhaoyi/ETDataset

import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import math
import time
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import Dataset, DataLoader
import matplotlib.pyplot as plt
from matplotlib_inline import backend_inline 
backend_inline.set_matplotlib_formats('svg')

Transformer类

只使用encoder,然后把encoder的输出展平,后接线性层进行输出,理解为encoder只是把原始特征进行变换。

class PositionalEncoding(nn.Module):
    
    def __init__(self, d_model, max_len=5000):
        
        super(PositionalEncoding, self).__init__()
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        return x + self.pe[:x.size(0), :] # [seq_length, batch_size, d_model]
    
    
class TransformerTimeSeriesModel(nn.Module):
    def __init__(self, input_size, output_size, seq_length, label_length, 
                 d_model = 256, nhead = 8, num_layers = 2, dropout=0.5):
        '''
        input_size, output_size, seq_length, label_length分别为输入维度、输出维度、历史时刻步数、多步预测步数
        '''
        super(TransformerTimeSeriesModel, self).__init__()
        self.src_mask = None
        self.embedding = nn.Linear(input_size, d_model)
        self.pos_coding = PositionalEncoding(d_model)
        self.encoder_layer = nn.TransformerEncoderLayer(d_model = d_model, nhead = nhead, 
                                                        dim_feedforward=4 * d_model, dropout = dropout)
        self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers = num_layers)
        self.fc1 = nn.Linear(seq_length * d_model, label_length * d_model)
        self.fc2 = nn.Linear(label_length * d_model, label_length * output_size)
        self.init_weights()
        
    def forward(self, src):
        
        if self.src_mask is None:
            device = src.device
            mask = self._generate_square_subsequent_mask(len(src)).to(device)
            self.src_mask = mask
        
        src = self.embedding(src)
        src = self.pos_coding(src)
        en_output = se
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值