第六章 数字签名

文章详细介绍了数字签名在身份认证中的作用,特别是非对称密码体制的优势。重点探讨了RSA数字签名方案,包括其同态性、签名与加密的结合以及潜在的缺点。此外,还讨论了ElGamal签名方案的安全性分析,强调了签名过程中防止攻击的关键点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

第六章 数字签名

6.1 数字签名

6.2 RSA数字签名方案

6.2.1 RSA数字签名

6.2.2 RSA签名的同态性

6.2.3 RSA数字签名与加密的结合

6.2.4 RSA数字签名的缺点

6.3 ElGamal签名方案

6.3.1 ElGamal签名方案描述

6.3.2 ElGamal签名方案的安全性分析

6.1 数字签名

  1. 对称密码体制

  2. 非对称密码体制

  • 由于非对称密码体制用户私钥的私有性,在实现数字签名方面具有巨大的优势。

  • 作用:进行身份认证

(1) 四个基本要求

(2)数字签名方案的基本描述

  • 数字签名算法是一个由(签名)密钥控制的函数。签名算法可以是公开的,但签名密钥是保密的。

(3)数字签名方案的分类

  • 仲裁:与签名识别的过程相同,都是利用公钥进行验证。

6.2 RSA数字签名方案

6.2.1 RSA数字签名

给定n=pq,p和q是大素数,ed mod φ(n)=1,公开密钥为(n,e),秘密密钥为(p,q,d)

  • 加密:c=me mod n

  • 解密:m=cdmod n =med mod n =m

  • 签名:s=md mod n

  • 验证:m=se mod n =med mod n =m

6.2.2 RSA签名的同态性

(1)RSA签名的同态性

(2)利用同态性进行攻击

6.2.3 RSA数字签名与加密的结合

设用户A:nA,eA,dA;用户B:nB,eB,dB;A→B:m

  • 若nA<nB:

    A:c = E(PUB, D(PRA,m))

    B:m = E(PUA, D(PRB,c))

  • 若nB<nA:

    A:c = D(PRA, E(PUB,m))

    B:m = D(PRB, E(PUA,c))

必须先用小模数对应密钥操作,再用大模数对应的密钥操作

  • 伪装攻击

  • 解决方案:

6.2.4 RSA数字签名的缺点

6.3 ElGamal签名方案

6.3.1 ElGamal签名方案描述

6.3.2 ElGamal签名方案的安全性分析

  • r=gk mod p

  • m = (xAr + ks) mod p-1

  • k不能被泄露,否则私钥XA可以被解出

  • k不能被重复使用(可以通过观察 r 发现),两次的方程联立可解出私钥

  • 若s为零,则应更换k重新计算。否则私钥可以被解出

  • r作为签名一部分被公开,签名者和攻击者都可以准备k-r预运算表,攻击复杂度就是查表的复杂度

​​​​​​​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值