Python通过卡尔曼滤波器实现预测

这段代码展示了卡尔曼滤波器的实现过程,通过`update`函数进行测量更新,`predict`函数进行运动预测。利用测量值和运动模型,不断更新和预测状态变量的均值和方差。在一系列测量和运动更新后,观察到当前状态和预测状态的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

def update(mean1,var1,mean2,var2):
    mean=(mean1*var2+mean2*var1)/(var1+var2)
    var=1/(1/var1+1/var2)
    return(mean,var)
def predict(mean1,var1,mean2,var2):
    mean=mean1+mean2
    var=var1+var2
    return(mean,var)
measurements=[5.,6.,7.,9.,10.]
motion=[1.,1.,2.,1.,1.]
measurements_sig=4
motion_sig=2
mu=0.
sig=1000
for i in range(len(measurements)):
    [mu,sig]=update(mu,sig,measurements[i],measurements_sig)
    print("current=", [mu,sig])
    [mu,sig]=predict(mu,sig,motion[i],motion_sig)
    print("predict=",[mu,sig])

部分运行结果如下

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值