世间本无绝对的天才,唯有持之以恒的付出方能成就不凡。对我们这些普通人而言,改变命运或许需要努力与幸运相辅相成,但倘若幸运未能如期而至,那就只能靠加倍努力来弥补。
2025年3月,我十分荣幸地成为字节跳动的一名大模型算法工程师。正如标题所讲述的,我从Java程序员转型AI大模型领域,在投入10000小时的深耕后,成功走进字节跳动,拿到了这份offer。相信同行们都明白,进入大厂并非易事,这份机会固然有运气的成分,但更多的是我一步一个脚印的踏实付出,值得庆幸的是,每一步前行都留下了扎实的印记。
下文内容涉及到:面试题(含答案)+学习笔记+电子书籍+学习视频,免费打包分享。
岗位: 字节大模型算法岗
面试问题汇总
- 进行自我介绍
- Llama2所采用的注意力机制是什么?请手写实现分组注意力
- 是否了解LangChain?谈谈它的结构
- 对位置编码是否熟悉?说说几种位置编码的相同点与不同点
- RLHF的具体工程流程是怎样的?其中包含几何模型吗?
- 分别阐述encoder-only、decoder-only、encoder-decoder这几种大模型的代表性作品
- 详细介绍p-tuning、LoRA等微调方法,并指出它们与传统fine-tuning微调的区别
- 当显存不足时,通常有哪些解决办法?
- 了解几种主流大模型的损失函数吗?它们有哪些相同和不同之处?
- 是否使用过DeepSpeed?
- 领域模型在持续预训练(Continue PreTrain)时,如何选取数据?
- 领域数据训练后,模型的通用能力往往会下降,怎样缓解这种模型对通用能力的遗忘?
- 在指令微调中,如何设定、选择和优化不同的超参数?这些超参数对模型效果有哪些具体影响?
- 在指令微调中,如何选择最佳的指令策略?该策略对模型效果有何影响?
- Llama、GLM、Bloom等现有大型模型在数据处理、训练细节以及模型架构(包括但不限于注意力机制、归一化和嵌入层)上有哪些优化点?
- 解决显存不足的方法有哪些?
- 请解释P-tuning的工作原理,并说明其与传统微调方法的不同之处。
其他:(HR和负责人都询问了一些关于个人发展的问题)
- 你认为自己遇到过的最大挫折是什么?是如何解决的?
- 你的职业规划是什么?
- 你对字节跳动有怎样的认识?
- 你认为字节是一家年轻的公司吗?年轻是它的核心竞争力吗?
- 你有崇拜的人吗?
- 不考虑公司的地理位置因素,你最想去哪个城市工作?
我为什么希望加入字节跳动?(字节跳动的优势)
①福利待遇优厚
我并非HR,也不是在为字节做宣传,但不得不说,字节跳动的福利待遇在一线大厂中确实名列前茅。由于我之前是外包出身,这种待遇上的差距让我更加觉得,能进入字节跳动工作是极大的幸运。
关于福利待遇,这里简单列举几点:
- 弹性打卡制度
- 房补(额度较高,非常人性化)
- 免费的三餐和下午茶(让人都吃胖了)
- 免费的健身房
- 配备顶配的16寸 MacBook
- 各种节日礼包
②拥有海量知识库
对我而言,字节跳动就像一个巨大的知识库。之所以这么说,从面试的流程和细节,到入职后工作上的安排,都给我带来了不一样的感触。从这些方面,能明显感受到公司对员工职业规划的重视,主管和导师都会主动沟通这方面的事情,这与我之前的外包工作经历截然不同。在交流过程中,我收获颇丰。
最让我佩服的是,字节有统一的入口,可以导航到海量的指南、知识沉淀,甚至还有其他各个产品线整理的技术和业务文档等。
③获得认同与归属感
加入字节后,我感受到了认同,也收获了归属感。虽然字节跳动很年轻,但在做事时大家有着共同的目标。这里的人讲究“字节范儿”,它并非条条框框的束缚,而是一种精神力量,本质上是一种价值认同。恰好,拥有相同价值认同的人聚集在了一起。
④虽忙碌但充实快乐
字节跳动是一家非常年轻化的公司,对于一线互联网公司来说,996是常态,字节跳动也难免需要“加班”。但字节给我最大的不同感受是,工作忙碌却充满生机。在字节工作了一段时间,我已经适应了这里的节奏,虽然辛苦,却一点也不觉得累,因为在充实的工作环境中,我能不断收获成长,在公司快速发展的同时,个人也得到了迅速提升。
另外,别以为一线大厂的“打工人”只会埋头工作,字节人的一大特点就是年轻,他们同样懂得享受生活,每个人都有自己的爱好,比如骑行、狼人杀、健身、摄影、瑜伽等,这与我之前对大厂员工的印象完全不同,我也在慢慢受到这种氛围的影响。
⑤注重工作效率的反思
以前我觉得自己的工作效率和时间管理做得还不错,至少能抽出时间做一些大家想做却没做的事,但现在才发现,这或许只是一种错觉。总是做容易的事情,自然不会感受到时间的压力,即便项目进度紧张,加加班、实行996似乎也没什么大不了。我们通常愿意延长工作时间,而不是思考如何提高效率,在相同时间内完成更多工作,当然,这其中也有很多不言而喻的客观原因。
来到字节后,从身边同事的工作细节中,我才真正明白了什么是“效率”。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。