去年六月,我在前司过得很不愉快,正在“骑驴找马”。这时候,杭州一家人工智能公司的HR联系了我,岗位是“AI训练师”,月薪可达12k。
这是近两年很火的职位,据说前景广阔、薪资丰厚,很多人零基础转行上岸,于是我也跃跃欲试。
我先在网上查了一下该公司的背景 —— 2017年成立,杭州准独角兽企业,规模百人以上。
我立刻就心动了 —— 作为一个毕业两年还没进过正规公司的落魄研究生,我太渴望一个好平台了。这就是上天赐给我的机会!
所以,我热情地回复了HR,对方也很快跟我约了电话面试的时间。
此后的一周里,面试推进得十分顺利:电话面➡️视频面➡️业务面➡️领导面,连贯而高效,所有的迹象都显示“稳了” —— 我马上就要脱离苦海,变成站在时代浪尖儿上的“AI训练师”了!
然而,我落选了。
收到消息的那一刻很懵,不明白是哪里出了差错 —— 明明做了充足的准备,明明得到了业务负责人的认可,明明各方面条件都很吻合… 我都打算跳槽了,结果对方好像在拿我充KPI ?!
毕竟,经历了四轮面试,说明我的业务能力是没问题的。
我没忍住,又追问了一下HR,对方的回复如下👇🏻
喜提“好人卡”
队友说:“哈哈,可能你表现得太优秀了!”
我提前写了好几页的面试答案,甚至罗列了思维导图,还跟队友进行了几次头脑风暴,逐条分析JD的要求,最终在面试中表现得沉着冷静、自信大方,一度以为这个岗位非我莫属。
唯一的bug是:我不爱加班。
在最后两轮面试中,三位面试官都问了我对加班文化的看法,我给出了网友们钦定的“标准答案”,但她们还是刨根问底,问我在之前是否有加班经历,我如实回答:“没有”。
如果是因为这个原因拒绝我,那我真的无话可说。
💚
这个故事到这里就该结束了,为什么还要单独写一篇推文呢?
在准备面试的过程中,我对“AI训练师”这个岗位有了初步的了解,发现实际的工作内容并没有那么复杂,门槛较低、薪资尚可,可以作为文科生的一个转行方向。
图源:Boss直聘
更重要的是,作为新兴职业,“AI训练师”对经验没有要求,因为大部分人都是新手。
1、 什么是“AI训练师”?
“AI训练师”主要负责训练和优化人工智能(AI)模型,通过人工标注和反馈来帮助AI更好地理解和处理数据,从而改善其表现。
听起来有些抽象,但实际上,核心工作就是给大模型“喂”信息,充实它的语料库,让它在与用户互动时更加自然和人性化。
以我投递简历的那家公司为例,他们主要的产品是“AI外呼”,即“AI客服”。通过对话模型的训练,AI能够模仿人工客服的语气和应答逻辑,处理各种客户需求,如解答问题、处理投诉和提供技术支持等。
因此,AI训练师的主要工作为:
1️⃣根据真实的客户对话和反馈,收集并整理数据,标注各种对话情境和反应,帮助AI不断优化语言表达、情感识别和问题解决能力;
2️⃣根据测试模型的表现,发现潜在的不足和漏洞,并与工程师及时沟通,调整和优化AI模型。
一句话总结:在这家公司,AI训练师要做的就是编写和优化(可能发生的)对话。
这么一拆解,是不是很简单?!文字游戏可是咱们文科生的强项!
2、为什么文科生更适合做“AI训练师”?
1️⃣文科生在语言理解、逻辑思维和细节观察上有天然优势,能够精准地进行数据标注和质量控制;
2️⃣文科生具有较强的沟通能力,能够快速适应技术环境,与工程师团队协作;
3️⃣文科生对文化和语言的敏感性有助于处理多语言、多文化的数据,从而灵活应对复杂问题。
3、面试真题
虽然我最终没能上岸,但这次面试是我迄今为止经历过的最完整的一次,很有参考意义。
1、电话面试
10分钟左右,主要看对岗位的意向。
2、视频面试
HRBP面试,20分钟,主要看与岗位的匹配度。
1️⃣在当前公司的工作内容有哪些?
2️⃣围绕新媒体工作问了三个问题:
👉🏻目前的运营成绩是如何取得的?
👉🏻如何利用线上平台引流?
👉🏻如何进行数据分析?
3️⃣为什么转行?
4️⃣为什么离职?
3、业务面试(线下)
业务主管和业务组长一起面试,聊了近一个小时。
1️⃣简历的深挖
2️⃣过往工作经历中最有趣的部分是什么?
3️⃣跨部门合作:与同事沟通协作时有没有特别印象深刻的事?
4️⃣为什么离职?
5️⃣未来的职业规划是什么?
6️⃣如何看待加班?在过去的工作中,加班多吗?
7️⃣多线程工作ok吗?
8️⃣平时有没有接到过AI电话?
9️⃣平时使用哪些电商平台,喜欢买什么?
🔟备课时是如何使用chatgpt的?
4、领导面试(线下)
面了10分钟左右,几乎没有新问题。
1️⃣为什么想转行到AI领域?
2️⃣你的职业规划是什么?
3️⃣个人与目标岗位的匹配度有哪些?
4️⃣在新媒体工作中所培养的用户思维和运营思维体现在哪里?
5️⃣在上一份工作中取得了一些新媒体成绩,你认为主要是抓住了目标用户的哪些痛点和痒点?
6️⃣平时用哪些电商平台,喜欢在网上买什么?
从整个过程来看,其实无需过度准备,招聘方关注的核心问题基本上是固定的,同一家公司的不同面试官可能会重复问这些问题。
所以,主要准备四个方面的内容即可:1️⃣自我介绍;2️⃣过往工作经历的梳理(尤其是业绩突出的部分);3️⃣对目标岗位JD的理解;4️⃣提前了解公司背景和业务。
4、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
5、为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
6、大模型入门到实战全套学习大礼包
1、大模型系统化学习路线
作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
2、大模型学习书籍&文档
学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
3、AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
4、大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
5、大模型大厂面试真题
面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
适用人群
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。