AcWing 89.a^b

这篇博客介绍了如何利用快速幂算法解决大整数乘法问题,以避免在处理大数据时的时间复杂度过高。通过将指数转换为二进制形式,循环计算并更新结果,实现了O(logN)的时间复杂度。同时,博主提到了初始化结果时模运算的重要性,以及在C++中处理整数溢出的技巧。

题目网址:89. a^b - AcWing题库

题目:

 分析 : 这题乍一看如果对a直接用for循环求乘幂的话时间复杂度在O(N),但是考虑到数据范围过大,在10的9次方,这个时间复杂度肯定会超时,所以我们要考虑优化一下。

其实这就引出了经典的快速幂模板

c++快速幂写法如下:

/*
快速幂主要的思想在于:每一个整数都可以转换为二进制数相加的形式写出来
因为每一个整数都可以写成二进制形式 例如:7=111 那么7=2^0+2^1+2^2
类似的乘幂写成二进制形式就是:5^10=5^8*5^2 因为指数10写成二进制为1010

b&1的意思是判断b的二进制个位是不是1

坑点:res在初始化时不模一的话会有一个比较坑的数据过不了,当p=1的时候模任何数都是0

乘上1ll是为了将int 型转化为longlong型避免数据爆出

由于使用了乘幂,所以时间复杂度为O(logN)
*/


#include<iostream>
using namespace std;

int main()
{
    int a,b,p;
    cin>>a>>b>>p; /*输入数据*/
    int res=1%p; 
    while(b)   /*当b的没有右移至0时则循环不终止*/
    {
        if(b&1) res=res*1ll*a%p;  /* 如果b二进制位中个位为1,也就是最终res中的一部分乘数是当前的a,则把当前a乘入到结果中*/
        a=a*1ll*a%p;  /* 更新乘幂,但不一定就乘到结果里去,因为可能此时b的二进制位的个位是0,最终组成的res中并不包含这个幂 */
        b>>=1; /* b的二进制数算术右移 */
    }
    cout<<res<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值