题目网址:89. a^b - AcWing题库
题目:
分析 : 这题乍一看如果对a直接用for循环求乘幂的话时间复杂度在O(N),但是考虑到数据范围过大,在10的9次方,这个时间复杂度肯定会超时,所以我们要考虑优化一下。
其实这就引出了经典的快速幂模板
c++快速幂写法如下:
/*
快速幂主要的思想在于:每一个整数都可以转换为二进制数相加的形式写出来
因为每一个整数都可以写成二进制形式 例如:7=111 那么7=2^0+2^1+2^2
类似的乘幂写成二进制形式就是:5^10=5^8*5^2 因为指数10写成二进制为1010
b&1的意思是判断b的二进制个位是不是1
坑点:res在初始化时不模一的话会有一个比较坑的数据过不了,当p=1的时候模任何数都是0
乘上1ll是为了将int 型转化为longlong型避免数据爆出
由于使用了乘幂,所以时间复杂度为O(logN)
*/
#include<iostream>
using namespace std;
int main()
{
int a,b,p;
cin>>a>>b>>p; /*输入数据*/
int res=1%p;
while(b) /*当b的没有右移至0时则循环不终止*/
{
if(b&1) res=res*1ll*a%p; /* 如果b二进制位中个位为1,也就是最终res中的一部分乘数是当前的a,则把当前a乘入到结果中*/
a=a*1ll*a%p; /* 更新乘幂,但不一定就乘到结果里去,因为可能此时b的二进制位的个位是0,最终组成的res中并不包含这个幂 */
b>>=1; /* b的二进制数算术右移 */
}
cout<<res<<endl;
return 0;
}