论文学习笔记:Privacy-preserving Cross-domain Recommendation with Federated Graph Learning


一、Abstrct

随着人们不可避免地跨越多个领域或各种平台与物品进行交互,跨领域推荐( Cross-domain Recommendation,CDR )得到了越来越多的关注。然而,日益增长的隐私问题限制了现有CDR模型的实际应用,因为它们假设不同领域之间的全部或部分数据是可访问的。

最近关于隐私感知CDR模型的研究忽略了来自多个领域数据的异构性,无法在跨领域推荐中实现一致的改进;因此,以保护隐私的方式进行有效的CDR仍然是一项具有挑战性的任务。

在本文中,我们提出了一种新颖的,据我们所知,用于隐私保护跨域推荐的联邦图学习方法( PPCDR ),以基于分布式多域数据捕获用户的偏好,并在不泄露隐私的情况下提高所有域的推荐性能。

PPCDR的主要思想是对给定用户在多个领域之间的全局偏好和在特定领域的局部偏好进行建模,刻画了用户对交互项目的共享和特定领域的偏好。

二、INTRODUCTION

典型的跨域推荐(CDR)方法主要通过重叠用户/物品或聚类模式在不同领域之间建立关联,并在这些领域之间传递有用信息。

例如,常见的方法包括:
集体矩阵分解(Collective Matrix Factorization):假设在电影和书籍领域都有用户评分数据。通过集体矩阵分解,我们可以利用用户在电影领域的评分信息来预测他在书籍领域的评分,反之亦然

码本传递(Codebook Transfer):码本传递方法创建一个“码本”(类似一个特征字典),在不同领域之间传递通用特征。它将源领域的知识映射到目标领域的特征空间,以便提高推荐质量

跨域图传递(Cross-Domain Graph Transfer):利用图结构来连接和传递多个领域之间的信息。它在每个领域中构建图网络,并在领域间共享相似节点或连接,以帮助信息流动。
在社交媒体和购物平台上,假设一个用户在社交媒体上关注了一些时尚博主,而这些博主推荐的品牌信息可以帮助预测该用户在购物平台上的偏好。

尽管现有的跨域推荐(CDR)方法取得了显著成功,但它们通常依赖一个较强的假设,即不同领域之间可以获取全部或部分的用户-物品交互数据。然而,由于商业竞争和隐私保护的原因,这一假设在实际中可能并不现实。

上述隐私和安全问题显著限制了高敏感数据(如交互数据)的跨域存储与共享,从而制约了跨域推荐(CDR)模型的实际应用。因此,迫切需要开发一种隐私保护的跨域推荐方法,以平衡隐私保护需求和跨域推荐质量。尽管已有一些研究提出了隐私感知的跨域推荐模型,但这些方法要么忽视了多领域数据的异质性,要么未能在普通用户和冷启动用户上实现一致的性能提升。

因此,仍然有必要开发一种能够在保护隐私的同时提高推荐质量的跨域推荐方法,以满足实际应用需求。

受最近联邦学习在数据隐私和安全方面取得的进展的启发,我们提出通过限制局部域数据的全局使用来增强跨域推荐系统的隐私保护能力。更具体地说,我们要求来自不同领域的交互数据仅在本地领域中被私有使用。

一个主要的挑战是不同领域的交互数据是异构的和私有的,在有限的数据访问或共享的情况下,我们需要解决分布式信息融合和特定领域的知识适应问题。

我们考虑跨域共享用户的CDR设置,其中本地交互数据只能在私有域空间中使用。
PPCDR的主要思想是对给定用户在所有领域之间的全局偏好和在特定领域的局部偏好进行建模。
这两种偏好表征了用户对交互项目的共同或特定领域的偏好,
并通过图神经网络( Graph Neural Networks,GNNs )更有效地集成。

在我们的PPCDR方法中,用户的全局偏好作为信息代理,用于连接不同领域,实现跨域的信息交流,并对其应用隐私保护策略。

而本地偏好与全局偏好同步(提取和注入信息),利用私有领域数据来刻画领域特定的偏好。通过这种全局-本地偏好建模方式,不仅可以提升单一领域的推荐效果,还能保障数据隐私。

在这里插入图片描述

具体来说,对于每个领域,我们通过增加连接全局和本地用户节点(对应全局和本地用户偏好)的链接来构建特定领域的用户-项目交互图,如图1所示,然后设计了一种基于GNNs的联合图学习方法。

为了以隐私保护的方式学习跨领域知识进行推荐,PPCDR的每次训练迭代由一个本地域内的私有更新过程和跨多个域的联合更新组成。

我们为每个域设计了一个图传输模块来进行双向的消息交换和传播,其中每个域中GNN的消息传递机制可以有效地融合全局和本地用户偏好,并捕获本地用户-项目交互中固有的协作信号。然后,在联合更新过程中,每个域在学习到的全局用户偏好上应用隐私保护技术(即,局部差分隐私)来增强隐私保护,然后将其共享给其他域。

同时,每个域接收来自其他域的全局用户偏好,然后通过个性化的聚合策略对全局用户偏好进行本地更新,以适应特定的域。通过这种方式,PPCDR可以有效地近似以隐私保护的方式直接共享局部交互数据的多域训练过程。

此外,我们提出了一种周期性的同步机制,以减少维护跨域的全局偏好所带来的通信成本。

三、PROBLEM FORMULATION

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

劲夫学编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值