MongoDB复杂分组聚合查询_mongodb分组查询

本文详细介绍了MongoDB的聚合查询和聚合管道方法,包括聚合查询的基本概念、聚合流程、常用聚合管道操作,如分组、筛选、映射、排序等,并与MySQL的聚合操作进行了对比,帮助读者理解和掌握MongoDB的数据处理能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


想学习架构师构建流程请跳转:Java架构师系统架构设计
在这里插入图片描述

1 聚合查询

在这里插入图片描述

MongoDB快速入门:https://blog.csdn.net/ZGL_cyy/article/details/112050829
SpringData MongoDB :https://blog.csdn.net/ZGL_cyy/article/details/112796334

聚合操作主要用于处理数据并返回计算结果。聚合操作将来自多个文档的值组合在一起,按条件分组后,再进行一系列操作(如求和、平均值、最大值、最小值)以返回单个结果。

1.1 MongoDB的聚合查询

	聚合是MongoDB的高级查询语言,它允许我们通过转化合并由多个文档的数据来生成新的在单个文档里不存在的文档信息。MongoDB中聚合(aggregate)主要用于处理数据(例如分组统计平均值、求和、最大值等),并返回计算后的数据结果,有点类似sql语句中的 count(*)、group by。

	在MongoDB中,有两种方式计算聚合:Pipeline 和 MapReduce。Pipeline查询速度快于MapReduce,但是MapReduce的强大之处在于能够在多台Server上并行执行复杂的聚合逻辑。MongoDB不允许Pipeline的单个聚合操作占用过多的系统内存。

在这里插入图片描述

2 聚合管道方法

MongoDB 的聚合框架就是将文档输入处理管道,在管道内完成对文档的操作,最终将文档转换为聚合结果,MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理,管道操作是可以重复的。

	最基本的管道阶段提供过滤器,其操作类似查询和文档转换,可以修改输出文档的形式。其他管道操作提供了按特定字段对文档进行分组和排序的工具,以及用于聚合数组内容(包括文档数组)的工具。

	此外,在管道阶段还可以使用运算符来执行诸如计算平均值或连接字符串之类的任务。聚合管道可以在分片集合上运行。

2.1 聚合流程

db.collection.aggregate()是基于数据处理的聚合管道,每个文档通过一个由多个阶段(stage)组成的管道,可以对每个阶段的管道进行分组、过滤等功能,然后经过一系列的处理,输出相应的结果。

聚合管道方法的流程参见下图

在这里插入图片描述

上图的聚合操作相当于 MySQL 中的以下语句:

select cust_id as _id, sum(amount) as total from orders where status like "%A%" group by cust_id;

2.1.1 详细流程

在这里插入图片描述

  1. db.collection.aggregate() 可以用多个构件创建一个管道,对于一连串的文档进行处理。这些构件包括:筛选操作的match、映射操作的project、分组操作的group、排序操作的sort、限制操作的limit、和跳过操作的skip
  2. db.collection.aggregate()使用了MongoDB内置的原生操作,聚合效率非常高,支持类似于SQL Group By操作的功能,而不再需要用户编写自定义的JavaScript例程。
  3. 每个阶段管道限制为100MB的内存。如果一个节点管道超过这个极限,MongoDB将产生一个错误。为了能够在处理大型数据集,可以设置allowDiskUsetrue来在聚合管道节点把数据写入临时文件。这样就可以解决100MB的内存的限制。
  4. db.collection.aggregate()可以作用在分片集合,但结果不能输在分片集合,MapReduce可以 作用在分片集合,结果也可以输在分片集合。
  5. db.collection.aggregate()方法可以返回一个指针(cursor),数据放在内存中,直接操作。跟Mongo shell 一样指针操作。
  6. db.collection.aggregate()输出的结果只能保存在一个文档中,BSON Document大小限制为16M。可以通过返回指针解决,版本2.6中:DB.collect.aggregate()方法返回一个指针,可以返回任何结果集的大小。

2.2 聚合语法


db.collection.aggregate(pipeline, options)

2.2.1 参数说明
参数类型描述
pipelinearray一系列数据聚合操作或阶段。详见聚合管道操作符 在版本2.6中更改:该方法仍然可以将流水线阶段作为单独的参数接受,而不是作为数组中的元素;但是,如果不将管道指定为数组,则不能指定options参数
optionsdocument可选。 aggregate()传递给聚合命令的其他选项。 2.6版中的新增功能:仅当将管道指定为数组时才可用。
2.2.2 注意事项
	使用db.collection.aggregate()直接查询会提示错误,但是传一个空数组如db.collection.aggregate([])则不会报错,且会和find一样返回所有文档。

2.3 常用聚合管道

2.3.1 与mysql聚合类比

为了便于理解,先将常见的mongo的聚合操作和mysql的查询做下类比

SQL 操作/函数mongodb聚合操作
where$match
group by$group
having$match
select$project
order by$sort
limit$limit
sum()$sum
count()$sum
join$lookup

$count

返回包含输入到stage的文档的计数,理解为返回与表或视图的find()查询匹配的文档的计数。db.collection.count()方法不执行find()操作,而是计数并返回与查询匹配的结果数。

语法


{ $count: <string> }

c

o

u

n

t

阶段相当于下面

count阶段相当于下面

count阶段相当于下面group+$project的序列:

db.zips.aggregate([
    {
        "$group": {
            "\_id": null,
            "count": {// 这里count自定义,相当于mysql的select count(\*) as tables
                "$sum": 1
            }
        }
    },
    {
        "$project": {// 返回不显示\_id字段
            "\_id": 0
        }
    }
])

示例

查询人数是100000以上的城市的数量

  • $match:阶段排除pop小于等于100000的文档,将大于100000的文档传到下个阶段
  • $count:阶段返回聚合管道中剩余文档的计数,并将该值分配给名为count的字段。
db.zips.aggregate([
    {
        "$match": {
            "pop": {
                "$gt": 100000
            }
        }
    },
    {
        "$count": "count"
    }
])

在这里插入图片描述

$group

按指定的表达式对文档进行分组,并将每个不同分组的文档输出到下一个阶段。输出文档包含一个_id字段,该字段按键包含不同的组。

	输出文档还可以包含计算字段,该字段保存由$group的_id字段分组的一些accumulator表达式的值。 $group不会输出具体的文档而只是统计信息。

语法


{ $group: { \_id: <expression>, <field1>: { <accumulator1> : <expression1> }, ... } }

  • _id字段是必填的;但是,可以指定_id值为null来为整个输入文档计算累计值。
  • 剩余的计算字段是可选的,并使用<accumulator>运算符进行计算。
  • _id<accumulator>表达式可以接受任何有效的表达式

accumulator操作符

名称描述类比sql
$avg计算均值avg
$first返回每组第一个文档,如果有排序,按照排序,如果没有按照默认的存储的顺序返回第一个文档。limit 0,1
$last返回每组最后一个文档,如果有排序,按照排序,如果没有按照默认的存储的顺序返回最后一个文档。-
$max根据分组,获取集合中所有文档对应值的最大值。max
$min根据分组,获取集合中所有文档对应值的最小值。min
$push将指定的表达式的值添加到一个数组中。-
$addToSet将表达式的值添加到一个集合中(无重复值,无序)。-
$sum计算总和sum
$stdDevPop返回输入值的总体标准偏差(population standard deviation)-
$stdDevSamp返回输入值的样本标准偏差(the sample standard deviation)-

g

r

o

u

p

阶段的内存限制为

100

M

,默认情况下,如果

s

t

a

g

e

超过此限制,

group阶段的内存限制为100M,默认情况下,如果stage超过此限制,

group阶段的内存限制为100M,默认情况下,如果stage超过此限制,group将产生错误,但是,要允许处理大型数据集,请将allowDiskUse选项设置为true以启用$group操作以写入临时文件。

注意:

  • “$addToSet”:expr,如果当前数组中不包含expr,那就将它添加到数组中。
  • “$push”:expr,不管expr是什么值,都将它添加到数组中,返回包含所有值的数组。

示例

按照state分组,并计算每一个state分组的总人数,平均人数以及每个分组的数量

db.zips.aggregate([
    {
        "$group": {
            "\_id": "$state",
            "totalPop": {
                "$sum": "$pop"
            },
            "avglPop": {
                "$avg": "$pop"
            },
            "count": {
                "$sum": 1
            }
        }
    }
])

在这里插入图片描述

查找不重复的所有的state的值


db.zips.aggregate([
    {
        "$group": {
            "\_id": "$state"
        }
    }
])

在这里插入图片描述

按照city分组,并且分组内的state字段列表加入到stateItem并显示

db.zips.aggregate([
    {
        "$group": {
            "\_id": "$city",
            "stateItem": {
                "$push": "$state"
            }
        }
    }
])

在这里插入图片描述

下面聚合操作使用系统变量$$ROOT按item对文档进行分组,生成的文档不得超过BSON文档大小限制


db.zips.aggregate([
    {
        "$group": {
            "\_id": "$city",
            "item": {
                "$push": "$$ROOT"
            }
        }
    }
]).pretty();

在这里插入图片描述

$match

过滤文档,仅将符合指定条件的文档传递到下一个管道阶段。

$match接受一个指定查询条件的文档,查询语法与读操作查询语法相同。

语法


{ $match: { <query> } }

管道优化

	$match用于对文档进行筛选,之后可以在得到的文档子集上做聚合,$match可以使用除了地理空间之外的所有常规查询操作符,**在实际应用中尽可能将$match放在管道的前面位置**。这样有两个好处:

  • 一是可以快速将不需要的文档过滤掉,以减少管道的工作量
  • 二是如果再投射和分组之前执行$match,查询可以使用索引

使用限制

  • 不能在$match查询中使用$作为聚合管道的一部分。
  • 要在$match阶段使用$text$match阶段必须是管道的第一阶段。
  • 视图不支持文本搜索。

示例

使用 $match做简单的匹配查询,查询缩写是NY的城市数据


db.zips.aggregate([
    {
        "$match": {
            "state": "NY"
        }
    }
]).pretty();

在这里插入图片描述

使用

m

a

t

c

h

管道选择要处理的文档,然后将结果输出到

match管道选择要处理的文档,然后将结果输出到

match管道选择要处理的文档,然后将结果输出到group管道以计算文档的计数


db.zips.aggregate([
    {
        "$match": {
            "state": "NY"
        }
    },
    {
        "$group": {
            "\_id": null,
            "sum": {
                "$sum": "$pop"
            },
            "avg": {
                "$avg": "$pop"
            },
            "count": {
                "$sum": 1
            }
        }
    }
]).pretty();

在这里插入图片描述

$unwind

从输入文档解构数组字段以输出每个元素的文档,简单说就是 可以将数组拆分为单独的文档。

语法

要指定字段路径,在字段名称前加上$符并用引号括起来。


{ $unwind: <field path> }

v3.2+支持如下语法

{
  $unwind:
    {
      path: <field path>,
      #可选,一个新字段的名称用于存放元素的数组索引。该名称不能以$开头。
      includeArrayIndex: <string>, 
      #可选,default :false,若为true,如果路径为空,缺少或为空数组,则$unwind输出文档
      preserveNullAndEmptyArrays: <boolean> 
    } 
 }

	如果为输入文档中不存在的字段指定路径,或者该字段为空数组,则$unwind默认会忽略输入文档,并且不会输出该输入文档的文档。

版本3.2中的新功能:要输出数组字段丢失的文档,null或空数组,请使用选项preserveNullAndEmptyArrays。

示例

以下聚合使用$unwind为loc数组中的每个元素输出一个文档:

db.zips.aggregate([
    {
        "$match": {
            "\_id": "01002"
        }
    },
    {
        "$unwind": "$loc"
    }
]).pretty();

db.zips.aggregate([
    {
        "$match": {
            "\_id": "01002"
        }
    },
    {
        "$unwind": {
            "path": "$loc",
            "includeArrayIndex": "locIndex",
            "preserveNullAndEmptyArrays": true
            }
     }
]).pretty();

在这里插入图片描述

$project

$project可以从文档中选择想要的字段,和不想要的字段(指定的字段可以是来自输入文档或新计算字段的现有字段),也可以通过管道表达式进行一些复杂的操作,例如数学操作,日期操作,字符串操作,逻辑操作。

语法

$project 管道符的作用是选择字段(指定字段,添加字段,不显示字段,_id:0,排除字段等),重命名字段,派生字段。

{ $project: { <specification(s)> } }

specifications有以下形式:

<field>: <1 or true> 是否包含该字段,field:1/0,表示选择/不选择 field

_id: <0 or false> 是否指定_id字段

<field>: <expression> 添加新字段或重置现有字段的值。 在版本3.6中更改:MongoDB 3.6添加变量REMOVE。如果表达式的计算结果为$$REMOVE,则该字段将排除在输出中。

<field>:<0 or false> v3.4新增功能,指定排除字段

  • 默认情况下,_id字段包含在输出文档中。要在输出文档中包含输入文档中的任何其他字段,必须明确指定

p

r

o

j

e

c

t

中的包含。如果指定包含文档中不存在的字段,

project中的包含。 如果指定包含文档中不存在的字段,

project中的包含。如果指定包含文档中不存在的字段,project将忽略该字段包含,并且不会将该字段添加到文档中。

  • 默认情况下,id字段包含在输出文档中。要从输出文档中排除id字段,必须明确指定$project中的_id字段为0。
  • v3.4版新增功能-如果指定排除一个或多个字段,则所有其他字段将在输出文档中返回。 如果指定排除_id以外的字段,则不能使用任何其他$project规范表单:即,如果排除字段,则不能指定包含字段,重置现有字段的值或添加新字段。此限制不适用于使用REMOVE变量条件排除字段。
  • v3.6版本中的新功能- 从MongoDB 3.6开始,可以在聚合表达式中使用变量REMOVE来有条件地禁止一个字段。
  • 要添加新字段或重置现有字段的值,请指定字段名称并将其值设置为某个表达式。
  • 要将字段值直接设置为数字或布尔文本,而不是将字段设置为解析为文字的表达式,请使用

l

i

t

e

r

a

l

操作符。否则,

literal操作符。否则,

literal操作符。否则,project会将数字或布尔文字视为包含或排除该字段的标志。

  • 通过指定新字段并将其值设置为现有字段的字段路径,可以有效地重命名字段。
  • 从MongoDB 3.2开始,$project阶段支持使用方括号[]直接创建新的数组字段。如果数组规范包含文档中不存在的字段,则该操作会将空值替换为该字段的值。
  • 在版本3.4中更改-如果$project 是一个空文档,MongoDB 3.4和更高版本会产生一个错误。
  • 投影或添加/重置嵌入文档中的字段时,可以使用点符号

示例

以下$project阶段的输出文档中只包含_id,city和state字段


db.zips.aggregate([
    {
        "$project": {
            "\_id": 1,
            "city": 1,
            "state": 1
        }
    }
]).pretty();

在这里插入图片描述

_id字段默认包含在内。要从$ project阶段的输出文档中排除_id字段,请在project文档中将_id字段设置为0来指定排除_id字段。


db.zips.aggregate([
    {
        "$project": {
            "\_id": 0,
            "city": 1,
            "state": 1
        }
    }
]).pretty();

在这里插入图片描述

以下$ project阶段从输出中排除loc字段


db.zips.aggregate([
    {
        "$project": {
            "loc": 0
        }
    }
]).pretty();

在这里插入图片描述

可以在聚合表达式中使用变量REMOVE来有条件地禁止一个字段,


db.zips.aggregate([
    {
        "$project": {
            "\_id": 1,
            "city": 1,
            "state": 1,
            "pop": 1,
            "loc": {
                "$cond": {
                    "if": {
                        "$gt": [
                            "$pop",
                            1000
                        ]
                    },
                    "then": "$$REMOVE",
                    "else": "$loc"
                }
            }
        }
    }
]).pretty();

在这里插入图片描述

我们还可以改变数据,将人数大于1000的城市坐标重置为0


db.zips.aggregate([
    {
        "$project": {
            "\_id": 1,
            "city": 1,
            "state": 1,
            "pop": 1,
            "loc": {
                "$cond": {
                    "if": {
                        "$gt": [
                            "$pop",
                            1000
                        ]
                    },
                    "then": [
                        0,
                        0
                    ],
                    "else": "$loc"
                }
            }
        }
    }
]).pretty();

在这里插入图片描述

新增字段列


db.zips.aggregate([
    {
        "$project": {
            "\_id": 1,
            "city": 1,
            "state": 1,
            "pop": 1,
            "desc": {
                "$cond": {
                    "if": {
                        "$gt": [
                            "$pop",
                            1000
                        ]
                    },
                    "then": "人数过多",
                    "else": "人数过少"
                }
            },
            "loc": {
                "$cond": {
                    "if": {
                        "$gt": [
                            "$pop",
                            1000
                        ]
                    },
                    "then": [
                        0,
                        0
                    ],
                    "else": "$loc"
                }
            }
        }
    }
]).pretty();

在这里插入图片描述

$limit

限制传递到管道中下一阶段的文档数

语法


{ $limit: <positive integer> }

示例,此操作仅返回管道传递给它的前5个文档。 $limit对其传递的文档内容没有影响。


db.zips.aggregate({
    "$limit": 5
});

注意

	当$sort在管道中的$limit之前立即出现时,$sort操作只会在过程中维持前n个结果,其中n是指定的限制,而MongoDB只需要将n个项存储在内存中。当allowDiskUse为true并且n个项目超过聚合内存限制时,此优化仍然适用。

$skip

跳过进入stage的指定数量的文档,并将其余文档传递到管道中的下一个阶段

语法


{ $skip: <positive integer> }

示例,此操作将跳过管道传递给它的前5个文档, $skip对沿着管道传递的文档的内容没有影响。


db.zips.aggregate({
    "$skip": 5
});

$sort

最全的Linux教程,Linux从入门到精通

======================

  1. linux从入门到精通(第2版)

  2. Linux系统移植

  3. Linux驱动开发入门与实战

  4. LINUX 系统移植 第2版

  5. Linux开源网络全栈详解 从DPDK到OpenFlow

华为18级工程师呕心沥血撰写3000页Linux学习笔记教程

第一份《Linux从入门到精通》466页

====================

内容简介

====

本书是获得了很多读者好评的Linux经典畅销书**《Linux从入门到精通》的第2版**。本书第1版出版后曾经多次印刷,并被51CTO读书频道评为“最受读者喜爱的原创IT技术图书奖”。本书第﹖版以最新的Ubuntu 12.04为版本,循序渐进地向读者介绍了Linux 的基础应用、系统管理、网络应用、娱乐和办公、程序开发、服务器配置、系统安全等。本书附带1张光盘,内容为本书配套多媒体教学视频。另外,本书还为读者提供了大量的Linux学习资料和Ubuntu安装镜像文件,供读者免费下载。

华为18级工程师呕心沥血撰写3000页Linux学习笔记教程

本书适合广大Linux初中级用户、开源软件爱好者和大专院校的学生阅读,同时也非常适合准备从事Linux平台开发的各类人员。

需要《Linux入门到精通》、《linux系统移植》、《Linux驱动开发入门实战》、《Linux开源网络全栈》电子书籍及教程的工程师朋友们劳烦您转发+评论

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以点击这里获取!

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值