时间序列预测 | Python实现卡尔曼滤波模型时间序列预测

26 篇文章 ¥299.90 ¥399.90
16 篇文章 ¥239.90 ¥399.90
本文介绍了卡尔曼滤波模型在时间序列预测中的应用,这是一种用于从噪声数据中估计动态系统状态的递归滤波器。卡尔曼滤波通过加权平均更新估计值,提供对未知变量的精确估计,适用于非平稳过程。文中还概述了其在图像处理和其他领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间序列预测 | Python实现卡尔曼滤波模型时间序列预测

基本介绍

卡尔曼滤波(Kalman filter)是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。卡尔曼滤波会根据各测量量在不同时间下的值,考虑各时间下的联合分布,再产生对未知变数的估计,因此会比只以单一测量量为基础的估计方式要准。卡尔曼滤波得名自主要贡献者之一的鲁道夫·卡尔曼。
卡尔曼滤波的算法是二步骤的程序。在估计步骤中,卡尔曼滤波会产生有关目前状态的估计,其中也包括不确定性。只要观察到下一个量测(其中一定含有某种程度的误差,包括随机噪声)。会通过加权平均来更新估计值,而确定性越高的量测加权比重也越高。算法是迭代的,可以在实时控制系统中执行,只需要目前的输入量测、以往的计算值以及其不确定性矩阵,不需要其他以往的资讯。

程序设计

#!/usr/bin/env python
# coding: utf-8

# 根据五个输入单元及两个初始值,构建kalman函数,对Kalman滤波算法进行实现

# In[1]:


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值