LLMFactory对qwen模型进行微调-甄嬛传版

🧾 1. 基础配置

✅ 1.1安装 Python(建议 3.10 或 3.11)

首先在合适的位置使用cmd命令创建python虚拟环境
在这里插入图片描述

✅ 1.2 创建虚拟环境
# 在你项目的目录下运行
python -m venv llama_env
llama_env\Scripts\activate  # 激活虚拟环境
✅ 1.3安装依赖

先升级pip

python -m pip install --upgrade pip
✅ 1.4 然后安装 PyTorch:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
✅ 1.5 若使用 CPU-only:
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory

pip install -e ".[torch,metrics]"  # 可选装 metrics,如果报错可去掉
pip install transformers datasets peft accelerate

🧾 2. LLM Factory源码的下载

2.1 离线版方法

https://github.com/hiyouga/LLaMA-Factory/tree/main
在这里插入图片描述

2.1 在线版(容易失败)

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git

🧾 4. 下载模型(以 Qwen 为例)

https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat/tree/main
在这里插入图片描述

  • 通过 Hugging Face 下载 Qwen 模型(如 Qwen/Qwen1.5-1.8B-Chat)
  • 下载后将其放到本地路径,如:D:\models\Qwen1.5-1.8B-Chat
    在这里插入图片描述

📝 6. 准备数据集(Alpaca / ChatML 格式)

https://www.modelscope.cn/datasets/kmno4zx/huanhuan-chat/files
下载嬛嬛的json文件
在这里插入图片描述

📝 7. 将新的json数据集配置进dataset_info

位置如下
D:\2025 Project\Ollama_Testing\LLaMA-Factory\data\dataset_info.json
在这里插入图片描述

📝 8. 在虚拟的python环境输入指令进入llm factory

python src/webui.py

📝 9. 在虚拟的python环境输入指令进入llm factory

  • 9.1选择你的模型
    -

  • 9.2选择数据集
    在这里插入图片描述

  • 9.3开始训练
    在这里插入图片描述

  • 9.4开始训练
    在这里插入图片描述

  • 9.5训练成功后导出模型
    在这里插入图片描述

📝 10. 将导出的模型 再导入llm factory

在这里插入图片描述

📝 11. 开始跟你的嬛嬛聊天

在这里插入图片描述

### 如何对Qwen/Qwen2-7B-Instruct进行微调 为了有效地对Qwen/Qwen2-7B-Instruct模型进行微调,需遵循一系列特定的方法和技术细节。 #### 准备环境与数据集 确保拥有适合的硬件资源来支持训练过程。通常情况下,GPU集群是必要的配置之一。准备用于微调的数据集至关重要,这些数据应该经过精心挑选并预处理成合适的格式以便于输入到模型中[^3]。 #### 数据格式化 当涉及到具体操作时,对于像Qwen2这样的大型语言模型来说,在微调过程中所使用的语料应当按照ChatML格式来进行整理。这意味着每条记录都应包含清晰定义的角色信息(例如用户提问、助手回复),以及可能存在的上下文对话历史等内容。 #### 微调方法概述 采用基于梯度下降优化算法的方式调整参数权重,使得模型能够更好地适应新的应用场景需求。可以利用Hugging Face Transformers库提供的API简化此流程: ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "path_to_pretrained_model" output_dir = "./fine_tuned_output" training_args = TrainingArguments( output_dir=output_dir, per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model=model_init(), args=training_args, train_dataset=train_dataset, ) trainer.train() ``` 上述代码片段展示了如何设置`Trainer`对象及其相关参数,并启动实际的训练过程[^1]。 通过以上步骤,便可以在原有基础上进一步提升Qwen/Qwen2-7B-Instruct的表现力,使其更贴合具体的业务场景或研究目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值