🧾 1. 基础配置
✅ 1.1安装 Python(建议 3.10 或 3.11)
首先在合适的位置使用cmd命令创建python虚拟环境
✅ 1.2 创建虚拟环境
# 在你项目的目录下运行
python -m venv llama_env
llama_env\Scripts\activate # 激活虚拟环境
✅ 1.3安装依赖
先升级pip
python -m pip install --upgrade pip
✅ 1.4 然后安装 PyTorch:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
✅ 1.5 若使用 CPU-only:
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]" # 可选装 metrics,如果报错可去掉
pip install transformers datasets peft accelerate
🧾 2. LLM Factory源码的下载
2.1 离线版方法
https://github.com/hiyouga/LLaMA-Factory/tree/main
2.1 在线版(容易失败)
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
🧾 4. 下载模型(以 Qwen 为例)
https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat/tree/main
- 通过 Hugging Face 下载 Qwen 模型(如 Qwen/Qwen1.5-1.8B-Chat)
- 下载后将其放到本地路径,如:D:\models\Qwen1.5-1.8B-Chat
📝 6. 准备数据集(Alpaca / ChatML 格式)
https://www.modelscope.cn/datasets/kmno4zx/huanhuan-chat/files
下载嬛嬛的json文件
📝 7. 将新的json数据集配置进dataset_info
位置如下
D:\2025 Project\Ollama_Testing\LLaMA-Factory\data\dataset_info.json
📝 8. 在虚拟的python环境输入指令进入llm factory
python src/webui.py
📝 9. 在虚拟的python环境输入指令进入llm factory
-
9.1选择你的模型
-
9.2选择数据集
-
9.3开始训练
-
9.4开始训练
-
9.5训练成功后导出模型