【多智能体编队】基于自适应控制算法非线性输入的多智能体系统编队控制附Matlab代码复现含文献

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在当今科技飞速发展的时代,多智能体系统(Multi-Agent Systems,MAS)犹如一颗璀璨的明星,在众多领域中闪耀着独特的光芒。从智能交通系统里车辆间的协同行驶,到工业自动化生产线上机器人的高效协作;从智能电网中分布式能源的优化调度,到军事作战里无人机编队的精准执行任务,多智能体系统无处不在,其身影贯穿于现代科技的各个角落。

在多智能体系统中,编队跟踪控制是一个核心且关键的研究方向,它对于实现系统的高效协同运作起着举足轻重的作用。就好比一场精彩的舞蹈表演,每个舞者都是一个智能体,他们需要紧密配合,保持特定的队形,跟随节奏完成一系列动作,才能呈现出完美的视觉效果。在多智能体系统里,各个智能体也需要遵循一定的规则和算法,形成特定的编队,并跟踪目标轨迹,从而高效地完成复杂任务。

然而,当我们深入研究多智能体系统中的非线性动力学系统时,会发现编队跟踪面临着诸多棘手的挑战。想象一下,每个智能体都像是一个具有复杂性格和行为模式的个体,它们的运动规律不再是简单的线性关系,而是受到各种非线性因素的影响。这些非线性动力学系统可能具有高度的不确定性和复杂性,使得传统的控制方法难以施展拳脚。此外,系统中还可能存在噪声干扰,就像在嘈杂的环境中进行交流,信息的传递会受到干扰,导致智能体难以准确获取和处理信息,从而影响编队跟踪的精度和稳定性。通信限制也如同道路上的交通堵塞,智能体之间的信息交互受到阻碍,无法及时共享状态和控制信息,使得协同工作变得困难重重。

面对这些挑战,研究人员一直在不懈努力,寻找新的方法和技术来突破困境。而今天要探讨的这篇论文,就为我们带来了全新的思路和解决方案。它聚焦于基于观测器的时变领导者 - 跟随者编队跟踪问题,针对具有单边 Lipschitz 和二次内部有界非线性动力学的多智能体系统展开深入研究,有望为多智能体系统的发展开辟新的道路。

探秘核心研究

(一)关键概念解析

在深入探究这项研究之前,我们先来认识几个重要的概念。首先是单侧 Lipschitz 和二次内有界非线性动力学。想象一下,在一个充满复杂运动的世界里,每个物体的运动都不是简单的直线或者规则的曲线,而是受到各种复杂因素的影响,这就是非线性动力学的世界。而单侧 Lipschitz 条件,就像是给这些复杂的运动加上了一个特定的限制,它描述了函数在一定条件下的变化率范围,与传统的 Lipschitz 条件相比,更加灵活地适应了一些复杂系统的特性。二次内有界非线性动力学则进一步对系统的能量或者状态变化范围进行了约束,让我们能够更好地把握系统的行为边界。

观测器在多智能体系统中扮演着 “超级侦探” 的角色。由于智能体在实际运行中,可能无法直接获取自身或其他智能体的全部状态信息,观测器就可以通过已有的部分信息,利用特定的算法和模型,来推测出那些无法直接观测到的状态,就像侦探根据现场的线索来推断案件的全貌一样,为后续的控制和决策提供重要依据。

基于边的自适应律是另一个关键概念。在多智能体系统中,智能体之间通过通信链路相互连接,这些链路就像是它们之间的 “交流通道”。基于边的自适应律就像是一个智能的 “通道管理者”,它能够根据智能体之间的信息交互情况、通信链路的质量以及系统的运行状态等因素,自动调整通信链路的相关参数,比如信息传递的速率、权重等,使得智能体之间的信息交流更加高效,从而提升整个系统的性能。

(二)创新协议设计

本文提出的基于观测器的协议结合基于边自适应律的设计,可谓是独具匠心,为解决多智能体系统的编队跟踪问题开辟了新的路径。当智能体无法获取非线性系统的完整状态时,观测器首先发挥作用。它就像一个精密的信息处理器,根据智能体已经获取到的部分状态信息,以及系统的数学模型和相关算法,对缺失的状态信息进行估计和推断。通过不断地分析和计算,观测器尽可能准确地还原出系统的真实状态,为后续的控制提供可靠的数据支持。

基于边的自适应律则在智能体之间的信息交互过程中发挥关键作用。它会实时监测智能体之间通信链路的状态,比如信息是否能够及时传递、是否存在干扰等情况。当发现通信链路出现问题或者系统的运行状态发生变化时,自适应律就会迅速做出反应,自动调整通信链路的参数。例如,它可能会增加重要信息的传递权重,或者调整信息传递的频率,以确保智能体之间能够有效地共享信息,协同完成编队跟踪任务。这种动态调整的机制,使得系统能够更好地适应复杂多变的环境,提高了编队跟踪的准确性和稳定性。

(三)显著优势呈现

与以往的非线性编队系统相比,本文所提出的方法犹如一把利剑,斩断了诸多传统方法的局限性,展现出了令人瞩目的优势。

在减少保守性方面,传统的非线性编队系统往往对系统的假设条件较为苛刻,这就像是给系统穿上了一件紧身衣,限制了它的灵活性和适应性。而新方法放宽了这些假设条件,不再对系统的参数和运行状态做过于严格的限制。例如,在处理 Lipschitz 常数较大的非线性系统时,传统方法可能会因为无法满足其严格的条件而失效,而新方法却能够凭借其独特的设计,有效地处理这类复杂系统,使得控制策略更加灵活,能够充分挖掘系统的潜力,提高系统的性能。

从通用性角度来看,新方法具有更广泛的适用范围。它不再局限于特定类型的非线性系统,无论是具有何种复杂特性的系统,只要满足一定的基本条件,新方法都能够发挥作用。这就好比一把万能钥匙,能够打开更多的锁,为解决不同领域中各种复杂的多智能体系统编队跟踪问题提供了可能。

在自适应律的作用下,协议设计不依赖已知通信拓扑这一特性,更是为系统的应用带来了极大的便利。在实际应用中,多智能体系统的通信拓扑可能会因为各种原因而发生变化,比如智能体的移动、通信设备的故障等。传统的协议设计往往依赖于事先已知的通信拓扑结构,一旦拓扑发生变化,就需要重新设计和调整协议,这不仅耗费大量的时间和精力,还可能导致系统在调整过程中出现不稳定的情况。而本文的新方法通过自适应律,能够实时感知通信拓扑的变化,并自动调整协议参数,使得系统在不同的通信拓扑下都能保持良好的性能。这就像一个智能的旅行者,无论身处何种路况,都能灵活地调整自己的行程,顺利到达目的地。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值