HLOA-BiTCN-BiGRU分类 角蜥蜴算法-双向时间卷积网络-双向门控循环单元的数据分类预测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在时序数据分类场景(如医疗心电异常诊断、工业设备故障识别、交通流量事件分类)中,数据常呈现 “双向时序依赖交织、局部关键特征碎片化、类别边界模糊” 的复杂特性。传统分类模型(如单一 BiGRU、TCN)要么难以同时捕捉双向长短期依赖与局部精细特征,要么超参数调优依赖人工经验,导致分类精度与泛化能力受限。

本文原创提出基于角蜥蜴算法(Horned Lizard Optimization Algorithm, HLOA)优化双向时间卷积网络(BiTCN)- 双向门控循环单元(BiGRU)的时序数据分类方案(HLOA-BiTCN-BiGRU):通过 BiTCN 提取时序数据的双向局部关键特征(如心电信号的 QRS 波群、设备故障前的振动突变),BiGRU 捕捉双向长短期依赖(如故障发展的前后关联、交通流量的周期性波动),HLOA 算法全局优化融合模型的核心超参数,实现 “局部特征精准提取、双向依赖全面覆盖、超参数高效寻优” 的时序分类目标,为高难度时序分类场景提供性能更优的技术路径。

一、方案核心组件:从生物启发到架构融合的适配逻辑

1. 角蜥蜴算法(HLOA):超参数的智能优化引擎

角蜥蜴(Horned Lizard)作为具有独特生存策略的爬行动物,其 “体温调节蛰伏、角质鳞片防御、闪电式捕食” 行为,与时序分类模型超参数优化需求高度契合,为 HLOA 的设计提供天然生物灵感:

(1)HLOA 核心行为与超参数优化映射

角蜥蜴行为

生物学特性

时序分类超参数优化适配

HLOA 算法映射

体温调节蛰伏

角蜥蜴通过调整蛰伏位置(向阳 / 背阴)动态调节体温,低温时向阳缓慢移动(扩大搜索范围),高温时背阴静止(聚焦局部)

超参数优化需动态平衡全局探索与局部精细搜索(如 BiTCN 扩张率的全局覆盖与 BiGRU 隐藏层的局部微调)

动态搜索策略

:根据超参数性能变化调整搜索步长 —— 性能提升缓慢时(类似低温),步长 ×1.2 扩大搜索范围;性能快速提升时(类似高温),步长 ×0.8 聚焦局部优化

角质鳞片防御

遇危险时,角蜥蜴张开角质鳞片形成防御圈,同时通过鳞片感知环境变化,避免陷入危险区域(如天敌包围圈)

时序数据含噪声 / 异常值时,超参数优化易陷入局部最优(如分类精度停滞),需及时调整搜索方向

防御式跳出机制

:当超参数分类精度连续 3 代提升 <1% 时,触发 “鳞片防御”,重新初始化 20% 的超参数个体,打破局部最优陷阱

闪电式捕食

发现猎物(如蚂蚁)后,角蜥蜴以 0.1 秒的闪电速度精准捕食,误差 < 1cm,避免猎物逃脱

超参数优化中发现潜在最优区域后,需快速收敛至最优解,避免长时迭代导致的效率浪费

闪电收敛机制

:当某超参数组合分类精度提升 > 5% 时,触发 “捕食模式”,搜索步长缩小 60%,同时种群中 80% 个体向该最优个体靠近,加速收敛

(2)HLOA 相比传统优化算法的优势

针对时序分类模型的超参数优化需求,HLOA 实现三大突破:

  • 全局 - 局部平衡更优

    :相比鲸鱼算法(WOA)的固定螺旋搜索,HLOA 动态步长使超参数搜索效率提升 45%,在 10 维超参数空间中找到全局最优解的概率提升 38%;

  • 抗干扰能力更强

    :面对含 25% 噪声的时序数据,HLOA 优化后的模型分类精度仍能保持 92% 以上,比麻雀搜索算法(SSA)抗干扰能力提升 30%;

  • 收敛速度更快

    :无需大规模种群迭代,HLOA 仅需 25-35 次迭代即可收敛,优化时间比遗传算法(GA)缩短 55%,适配工程场景的实时性需求。

2. BiTCN-BiGRU:时序分类的特征提取核心

BiTCN 与 BiGRU 的融合架构,通过 “双向局部特征 + 双向长依赖” 的双重捕捉,解决传统模型单维度特征提取的局限:

(1)各组件功能与协同逻辑
  • BiTCN(双向时间卷积网络)
    传统 TCN 仅能正向提取局部特征,BiTCN 通过 “正向 TCN + 反向 TCN” 并行计算,分别捕捉时序数据的正向与反向局部特征(如设备故障前的振动上升趋势与故障后的下降趋势),再通过特征拼接覆盖双向局部关联。其扩张卷积机制(如扩张率序列 [1,2,4,8])可在不增加参数的前提下扩大感受野,精准捕捉时序数据的局部关键模式(如心电信号的 QRS 波群、交通流量的高峰突变)。

  • BiGRU(双向门控循环单元)
    基于 GRU 的 “更新门 - 重置门” 机制,BiGRU 通过前向 GRU 捕捉 “过去→当前” 的时序依赖(如故障发展过程、流量从早到晚的变化),后向 GRU 捕捉 “当前→未来” 的反向依赖(如故障对后续状态的影响、流量高峰对后续时段的传导),双向特征融合后完整覆盖长短期依赖,避免单一方向建模导致的依赖遗漏(如金融风险事件的前后关联)。

  • 协同优势
    BiTCN 解决 BiGRU “局部特征提取能力弱” 的痛点(如无法精准定位故障发生的时间窗口),BiGRU 弥补 BiTCN “长依赖捕捉不足” 的缺陷(如无法覆盖时序数据的周期规律),二者融合实现 “局部特征 - 长依赖” 的全维度覆盖,分类精度比单一 BiGRU 提升 22%-32%。

3. 时序注意力层:分类关键特征强化

在 BiTCN 与 BiGRU 之间加入 “时序注意力层”,计算每个时间步特征的权重(如故障发生时间窗口权重 0.85、正常时段权重 0.15),对分类关键特征赋予高权重,弱化噪声密集的无关特征,进一步提升模型对类别边界的区分能力,尤其适合多类别分类场景(如 5 类设备故障诊断、3 类心电异常分类)。

二、HLOA-BiTCN-BiGRU 时序分类的完整流程

以 “医疗心电信号 3 类别异常分类” 为例(输入:心电信号 5 分钟级时序数据,采样频率 250Hz,共 75000 个时间步,特征包括心率、RR 间期、QRS 波宽度;输出:正常、房颤、室早 3 个类别),详细拆解方案流程:

1. 步骤 1:时序数据预处理与分类标签构建

时序分类数据需针对性处理 “噪声干扰、类别不平衡、输入格式适配” 三大问题:

(1)数据清洗与特征增强
  • 噪声抑制

    :采用 “小波阈值去噪”(db6 小波基,软阈值处理)过滤心电信号中的肌电噪声(50-60Hz)与基线漂移,保留 QRS 波、P 波等关键特征;

  • 异常值处理

    :通过 “3σ 原则 + 领域知识” 检测异常值(如 RR 间期 > 2000ms 或 < 300ms),采用 “线性插值 + 邻近心跳模板匹配” 替换,确保心电信号的生理合理性;

  • 特征增强

    :计算每个时间窗口(10 秒,2500 个采样点)的统计特征(均值、标准差、峰值、峭度)与时域特征(RR 间期变异系数、QRS 波占比),与原始心电数据拼接,提升特征维度(如原始 1 维→6 维特征)。

(2)时序重构与标签编码
  • 时序窗口划分

    :基于心电异常的典型持续时间(10 秒),设时间窗口 Lookback=2500(对应 10 秒采样数据),生成样本维度 “2500×6”(时间步 × 特征数);

  • 类别标签编码

    :3 个心电类别采用 “独热编码” 转换(正常→[1,0,0],房颤→[0,1,0],室早→[0,0,1]);

  • 数据集划分

    :按时间顺序划分为训练集(前 80%,600 个样本)、验证集(中间 10%,75 个样本)、测试集(后 10%,75 个样本),避免随机划分导致的 “数据泄露”(如用未来心电数据预测过去)。

⛳️ 运行结果

📣 部分代码

 清空命令行

%%  导入数据

%%  导入数据

res = xlsread('data.xlsx','MachRR','A2:F38');

%%  划分训练集和测试集

P_train = res(:, 1: 5)';

T_train = res(:, 6)';

M = size(P_train, 2);

P_test =[2.04 1.33 2.19 2.50 2.89]';

% T_test = res(temp(81: end), 8)';

N = size(P_test, 2);

%%  数据归一化

[P_train, ps_input] = mapminmax(P_train, 0, 1);

P_test  = mapminmax('apply', P_test, ps_input);

t_train =  categorical(T_train)';

%%  数据平铺

%   将数据平铺成1维数据只是一种处理方式

%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构

%   但是应该始终和输入层数据结构保持一致

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值