如何让你的RAG应用添加引用:基于LangChain的详细指南
在现代的问答(Q&A)应用中,特别是在信息复杂且专业性强的场景下,用户对答案的准确性和可信度的要求越来越高。除了提供直接的回答,很多用户也希望能够看到生成答案所参考的文档来源。这对于增强用户对系统的信任、提升信息透明度和提高问答系统的实际应用价值尤为重要。
在本文中,我们将详细介绍如何通过检索增强生成(Retrieval Augmented Generation,RAG)技术让模型生成答案时添加引用。这不仅能够让用户了解答案是基于哪些文献或数据得出的,还可以提高用户的使用体验和对信息的信任度。
我们将介绍五种方法,帮助你实现RAG应用的引用功能:
- 使用工具调用引用文档ID。
- 使用工具调用引用文档ID并提供文本片段。
- 直接通过提示引用。
- 检索后的处理(对检索到的上下文进行压缩,使其更具相关性)。
- 生成后的处理(通过第二次调用模型对生成的答案添加引用)。
我们建议先尝试前几种方法,如果你的模型支持工具调用,那么优先使用第一种或第二种方法。如果这些方法对你的用例不适用,再依次尝试后面的其他方法。
为什么引用功能至关重要?
当AI生成答案时,特别是涉及到复杂问题或专业领域的问题时,用户希望能够追踪答案的来源。例如,医疗、法律或金融等高风险领域的答案不仅需要准确,还需要为用户提供可追溯的来源以确保答