大数据学习之Spark基础

Spark基础

简述

1、spark作业执行的特点:

(1)只有遇到行动算子的时候,整个spark作业才会被触发执行

(2)遇到几次,执行几次

2、RDD: 弹性分布式数据集

弹性:数据量可大可小

RDD类似于容器,但是本身存储的不是数据,是计算逻辑

当遇到行动算子的时候,整个spark作业才会被触发执行,从第一个RDD开始执行,数据才开始产生流动

数据在RDD之间只是流动关系,不会存储

流动的数据量可以很大,也可以很小,所以称为弹性

分布式:

spark本质上它是需要从HDFS中读取数据的,HDFS是分布式,数据block块将来可能会在不同的datanode上

RDD中流动的数据,可能会来自不同的datanode中的block块数据

数据集:

计算流动过程中,可以短暂地将RDD看成一个容器,容器中有数据,默认情况下在内存中不会进行存储

后面会有办法将一个RDD的数据存储到磁盘中

RDD的5大特性:(面试必问!)
1、RDD是由一系列分区构成

1)读文件时的minPartitions参数只能决定最小分区数,实际读取文件后的RDD分区数,由数据内容本身以及集群的分布来共同决定的

2)若设置minPartitions的数量比block块数量还少的话,实际上以block块数量来决定分区数

3)产生shuffle的算子调用时,可以传入numPartitions(例如:groupby()),可以真正改变RDD的分区数,设置多少,最终RDD就有多少分区

4)文件会以block块的形式存储在HDFS上,若文件未达到128M默认值的话也会被一个block块存储。

一开始RDD中的分区数由读取数据的block块数量决定的。

后一个RDD中的分区数据,除KV函数以外,对应的是前一个RDD中的分区数据所进行逻辑处理后的结果。默认情况下,若后续分区不做处理的话,后续所有的RDD的分区数取决于第一个RDD。

最终RDD中有几个分区,将来在HDFS中就会看到几个结果文件(HDFS -> RDD -> HDFS)

2、算子是作用在每一个分区上的(每一个分区都会处理)
3、RDD与RDD之间存在一些依赖关系

1)窄依赖 前一个RDD中的某一个分区数据只会到后一个RDD中的某唯一分区中 一对一(也可能前多个分区到后一个分区中)的关系

2)宽依赖 前一个RDD中的某一个分区数据会进入到后一个RDD中的不同分区中 一对多的关系 也可以通过查看是否产生shuffle来判断

3)整个spark作业会被宽依赖的个数划分若干个stage, Num(stage) = Num(宽依赖) + 1

4)当遇到产生shuffle的算子的时候,涉及到从前一个RDD写数据到磁盘中,从磁盘中读取数据到后一个RDD的现象,

注意:第一次触发执行的时候,磁盘是没有数据的,所以会从第一个RDD产生开始执行

当重复触发相同的执行的时候,对于同一个DAG有向无环图而言,会直接从shuffle之后的RDD开始执行(省略从前一个RDD写数据到磁盘中的过程),可以直接从磁盘读取数据。

5)**在一个阶段中,RDD有几个分区,**就会有几个并行task任务

4、kv算子只能作用在kv的RDD上
5、spark会提供最优的任务计算方式,只移动计算,不移动数据。

Spark的设计原则之一是数据本地化(Data Locality),即尽量让计算任务在数据所在的节点上执行,从而减少数据的网络传输开销。

Spark实例:wordcount
object WordCount2 {
   
   
  def main(args: Array[String]): Unit = {
   
   
    //创建spark配置文件对象
    val conf: SparkConf = new SparkConf()
    //设置运行模式
    //如果是本地local模式运行的话,需要设置setMaster
    //将来如果是集群进行,将这句话注释即可
    conf.setMaster("local")
    //设置spark作业的名字
    conf.setAppName("wordcount")

    //创建spark core上下文环境对象
    val sc: SparkContext = new SparkContext(conf)
    //===================================================================================

    //读取文件,每次读取一行
    //RDD是spark core中的核心数据结构,将来运行的时候,数据会在RDD之间流动,默认基于内存计算
    val linesRDD: RDD[String] = sc.textFile("spark/data/wcs/*")
    //    println(s"linesRDD的分区数:${linesRDD.getNumPartitions}")

    //一行数据根据分隔符分割
    val wordRDD: RDD[String] = linesRDD.flatMap(_.split("\\|"))
    //    println(s"wordRDD的分区数:${wordRDD.getNumPartitions}")


    //将每一个单词组成(word,1)
    val kvRDD: RDD[(String, Int)] = wordRDD.map((_, 1))
        println(s"kvRDD的分区数:${kvRDD.getNumPartitions}")

    //根据键进行分组,并设置分区数为 5
    val kvRDD2: RDD[(String, Iterable[(String, Int)])] = kvRDD.groupBy(_._1,numPartitions = 5)
        println(s"kvRDD2的分区数:${kvRDD2.getNumPartitions}")

    val resRDD: RDD[(String, Int)] = kvRDD2.map((e: (String, Iterable[(String, Int)])) => (e._1, e._2.size))
        println(s"resRDD的分区数:${resRDD.getNumPartitions}")

    //打印
    resRDD2.foreach(println)

    //指定的是所要写入数据的文件夹的路径
    //spark如果是local本地运行的话,会将本地文件系统看作一个hdfs文件系统
    resRDD.saveAsTextFile("spark/data/outdata1")

  }
}
Spark中RDD调用的函数,称之为算子

算子分为两类:

1、转换算子(RDD -> RDD,处理逻辑)

2、行动算子(触发作业的执行)

1、转换算子
1)Map
import org.apache.spark.rdd.RDD
import org.apache.spark.{
   
   SparkConf, SparkContext}

object Demo1Map {
   
   
  def main(args: Array[String]): Unit = {
   
   
    val conf = new SparkConf()
    conf.setMaster("local")
    conf.setAppName("map算子演示")
    val sc: SparkContext = new SparkContext(conf)

    val lineRDD: RDD[String] = sc.textFile("spark/data/students.txt")
    //map操作算子:将rdd中的数据依次取出,传递给后面函数逻辑,将计算后的数据返回到新的rdd中
    //将rdd中的数据依次取出,处理完的数据返回下一个rdd直接继续执行后续的逻辑
    val rdd2: RDD[(String,String,String,String,String)] = lineRDD.map((line: String) => {
   
   
      println("==============处理后的数据========================")
      val array1: Array[String] = line.split(",")
      (array1(0),array1(1),array1(2),array1(3),array1(4))
    })

    //foreach是一个行动算子,遇到行动算子,触发作业执行
    /**
     * 转换操作(转换算子中定义了操作逻辑)仅仅是定义了数据应该如何被转换,而不会立即执行。
     * 只有当需要计算一个结果时(即调用行动算子时),才会执行。
     * 打印结果:
     * ==============处理后的数据========================
     * (1500100001,施笑槐,22,女,文科六班)
     * ==============处理后的数据========================
     * (1500100002,吕金鹏,24,男,文科六班)
     *每次调用行动算子(foreach)打印一条数据,都会是整个RDD重新执行一次(所有RDD的执行关系是一个有向无环图)
     */
    rdd2.foreach(println)

  }

}
2)filter
import org.apache.spark.{
   
   SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值