七.OpenCv图像轮廓

本文详细介绍了OpenCV中的图像轮廓概念及其在物体识别和检测中的作用。讲解了查找轮廓、绘制轮廓的方法,以及如何计算轮廓面积和周长。此外,还探讨了多边形逼近、凸包、外接矩形等关键操作,为图像处理和计算机视觉提供实用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7. 图像轮廓

7.1 什么是图像轮廓

图像轮廓是具有相同颜色或灰度的连续点的曲线. 轮廓在形状分析和物体的检测和识别中很有用。

轮廓的作用:

  • 用于图形分析
  • 物体的识别和检测

注意点:

  • 为了检测的准确性,需要先对图像进行二值化Canny操作
  • 画轮廓时会修改输入的图像, 如果之后想继续使用原始图像,应该将原始图像储存到其他变量中。

7.2 查找轮廓

  • findContours(image, mode, method[, contours[, hierarchy[, offset]]])

    • mode 查找轮廓的模式

      • RETR_EXTERNAL = 0, 表示只检测外围轮廓

      • RETR_LIST = 1, 检测的轮廓不建立等级关系, 即检测所有轮廓, 较为常用

      • RETR_CCOMP = 2, 每层最多两级, 从小到大, 从里到外.

      • RETR_TREE = 3, 按照树型存储轮廓, 从大到小, 从右到左.

        ![](image-20211117145126614

    • method 轮廓近似方法也叫ApproximationMode

      • CHAIN_APPROX_NONE 保存所有轮廓上的点
      • CHAIN_APPROX_SIMPLE, 只保存角点, 比如四边形, 只保留四边形的4个角, 存储信息少, 比较常用
    • 返回 contours和hierachy 即轮廓和层级

import cv2
import numpy as np

# 该图像显示效果是黑白的, 但是实际上却是3个通道的彩色图像.
img = cv2.imread('./contours1.jpeg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)

# cv2.imshow('img', img)
# cv2.imshow('binary', binary)

# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 打印轮廓
print(contours)
cv2.waitKey(0)
cv2.destroyAllWindows()

7.3 绘制轮廓

  • drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]])
    • image 要绘制的轮廓图像
    • contours轮廓点
    • contourIdx 要绘制的轮廓的编号. -1 表示绘制所有轮廓
    • color 轮廓的颜色, 如 (0, 0, 255)表示红色
    • thickness线宽, -1 表示全部填充
import cv2
import numpy as np

# 该图像显示效果是黑白的, 但是实际上却是3个通道的彩色图像.
img = cv2.imread('./contours1.jpeg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)


# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值