卷积层有两种解释方式如下
版本一 神经元
当我们人类在识别物体时,是分特征部位进行辨识。(比如,有尖尖的嘴,有羽毛,有翅膀,会飞,则可能为鸟类)可以将图片中的物体分成好几个部分(如鸟类的翅膀,喙),在对每个部分进行识别时,可以以接受域(receptive field)作为输入单位。每一个接受域由多个像素组成,可由一个或多个神经元识别。
如上图所示,每个部分可以链接不同的神经元,不同部分之前可以重叠。
每个接受域在作为神经元的输入时,需要展成一个一维向量。
卷积层有两种解释方式如下
当我们人类在识别物体时,是分特征部位进行辨识。(比如,有尖尖的嘴,有羽毛,有翅膀,会飞,则可能为鸟类)可以将图片中的物体分成好几个部分(如鸟类的翅膀,喙),在对每个部分进行识别时,可以以接受域(receptive field)作为输入单位。每一个接受域由多个像素组成,可由一个或多个神经元识别。
如上图所示,每个部分可以链接不同的神经元,不同部分之前可以重叠。
每个接受域在作为神经元的输入时,需要展成一个一维向量。