李宏毅深度学习——卷积神经网络CNN

本文深入探讨卷积神经网络CNN的两种解释:神经元与过滤器。阐述了接受域、卷积核的移动、填充以及全连接层的概念。同时提到过滤器在转换矩阵和创建feature map中的作用,以及池化操作如MaxPooling的重要性。文章还提及了Alpha Go中CNN的应用,强调池化避免丢失关键信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积层有两种解释方式如下watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAbTBfNTg1ODYyMzU=,size_20,color_FFFFFF,t_70,g_se,x_16

 

 版本一  神经元

当我们人类在识别物体时,是分特征部位进行辨识。(比如,有尖尖的嘴,有羽毛,有翅膀,会飞,则可能为鸟类)可以将图片中的物体分成好几个部分(如鸟类的翅膀,喙),在对每个部分进行识别时,可以以接受域(receptive field)作为输入单位。每一个接受域由多个像素组成,可由一个或多个神经元识别。watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAbTBfNTg1ODYyMzU=,size_20,color_FFFFFF,t_70,g_se,x_16

 如上图所示,每个部分可以链接不同的神经元,不同部分之前可以重叠。

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAbTBfNTg1ODYyMzU=,size_20,color_FFFFFF,t_70,g_se,x_16

 每个接受域在作为神经元的输入时,需要展成一个一维向量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值