- 博客(44)
- 收藏
- 关注
原创 生成对抗网络(GAN)代码实战
本文介绍了生成对抗网络(GAN)在MNIST手写数字生成中的应用。GAN通过生成器和判别器的对抗博弈实现数据生成,其中生成器将64维噪声映射为784维图像,判别器则区分真假样本。训练过程采用交替优化策略,使用二元交叉熵损失函数和Adam优化器。
2025-07-29 21:12:29
472
原创 基于交替最小二乘法(ALS)的实现
本文介绍了基于交替最小二乘法(ALS)的协同过滤推荐系统实现。首先阐述了协同过滤和矩阵分解的基本原理,包括User-CF和Item-CF两种方法及其局限性。然后详细讲解了ALS算法原理,通过交替优化用户和物品的隐因子矩阵来最小化带正则化的平方误差。文章提供了两种代码实现:基于NumPy的版本展示了核心算法流程,包含数据读取、模型训练和评估模块;基于PyTorch的版本采用神经网络框架,使用嵌入层表示用户和物品特征。
2025-07-21 12:42:41
387
原创 基于物品的协同过滤(ItemCF)代码实战
摘要:本文实现了一个基于物品协同过滤(ItemCF)的推荐系统。主要包括数据读取、训练测试集划分、物品相似度计算和推荐生成等功能。通过读取用户-物品-评分三元组数据,使用余弦相似度计算物品相似度,并为用户推荐相似物品中未评分过的物品。
2025-07-18 22:05:16
272
原创 基于用户的协同过滤(UserCF)代码实战
本文介绍了一个基于用户的协同过滤推荐系统(UserCF)实现。代码包含以下核心功能:1) 数据读取(readTriple和readRecData函数),支持从文件读取用户-物品-评分三元组数据并划分训练/测试集;2) 相似度计算(cos4set函数),使用余弦相似度衡量用户兴趣相似度;3) K近邻查找(knn4set函数),为每个用户找到最相似的k个邻居;4) 推荐生成(get_recomedations_by_usrCF函数),基于邻居用户喜欢的物品产生推荐。
2025-07-18 21:58:29
87
原创 协同过滤中的几种相似度指标
摘要:本文介绍了四种常用的相似度计算方法:1)CN相似度通过统计共同邻居数量衡量对象相似性;2)Jaccard相似度计算集合交集与并集的比例;3)余弦相似度通过向量夹角衡量相似程度;4)Pearson相似度评估线性相关性。每种方法都有特定应用场景:CN适用于协同过滤推荐,Jaccard适合集合比较,余弦和Pearson适合向量分析。Pearson可视为中心化后的余弦相似度。代码示例展示了各方法的实现方式,帮助理解不同算法的特点和适用性。
2025-07-18 18:53:00
634
原创 LangChain RAG 实战
本文介绍了一个基于文档的问答系统实现方案。首先将多个txt文档进行分割处理,通过通义千问的Embedding模型将文档向量化存储到Chroma数据库中。系统采用多模块设计:文档加载分割模块、向量存储模块、检索模块和对话处理模块。通过RunnablePassthrough实现问题与上下文的拼接,使用ChatTongyi模型作为问答核心,并设计了基于会话ID的历史消息存储机制。该系统支持连续问答,能够根据历史对话上下文进行智能回复,实现了基础的文档问答功能。
2025-07-10 16:27:44
408
原创 基于pytorch.nn模块实现softmax回归模型
本文介绍了基于B站李沐《动手学深度学习》课程的Fashion-MNIST分类实践笔记。主要内容包括:1) 数据加载与预处理函数实现,使用torchvision加载Fashion-MNIST数据集并支持图像尺寸调整;2) 可视化工具函数开发,包含图像网格显示和标签转换功能;3) 构建简单的全连接神经网络模型,采用正态分布初始化权重;4) 训练流程实现,包含准确率计算、损失函数定义(交叉熵)和SGD优化器使用;5) 完整的模型训练与评估过程,包含10个epoch的训练和测试集验证。
2025-07-09 15:10:52
250
原创 从0实现softmax回归模型
本笔记介绍了基于李沐《动手学深度学习》课程的Fashion-MNIST分类任务实现。包含数据加载、可视化工具函数(如show_images)、模型评估方法(evaluate_accuracy)以及训练流程(train_epoch_ch3)。重点展示了从零实现的多分类神经网络:使用Softmax激活函数、交叉熵损失和自定义SGD优化器。代码包含完整的训练循环(10个epoch)和预测可视化功能,准确率评估可达80%以上。所有实现均采用PyTorch框架,包含详细的函数注释和参数说明,适合深度学习初学者参考学习
2025-07-09 15:08:09
108
原创 基于pytorch.nn模块实现线性模型
本笔记基于李沐AI系列课程,实现了一个完整的线性回归模型。从数据生成(使用torch.normal模拟2维特征和标签)、模型定义(Sequential容器+Linear层)到训练过程(SGD优化器+MSELoss),详细展示了PyTorch实现流程。通过3轮训练,模型参数(w=[1.9998,-3.4003],b=4.2002)接近真实值(w=[2,-3.4],b=4.2),最终损失降至0.0001。代码包含数据加载器(DataLoader)的实现、参数初始化技巧以及训练循环的完整逻辑。
2025-07-09 11:58:10
279
原创 从0实现线性回归模型
本文介绍了基于B站李沐《动手学深度学习》课程的自定义神经网络实现方法。通过PyTorch框架,从零构建了一个单层线性回归模型,包括自定义的模型结构、均方损失函数和随机梯度下降优化器。实验使用合成数据验证模型效果,经过3轮训练后损失降至0.00005,学习到的参数(w=[2.0003,-3.3994],b=4.1998)接近真实值(w=[2,-3.4],b=4.2),证明了实现的有效性。代码展示了深度学习基础组件的底层实现原理,包括前向传播、反向传播和参数更新过程。
2025-07-09 11:51:13
157
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人