【精彩回顾】浙江大学专场-- 存内计算驱动AI算力与应用生态链创新

当 AGI 浪潮席卷而来,AI 底层算力正成为重构智能时代的核心引擎。而存内计算 —— 这一打破冯诺依曼架构瓶颈的革命性技术,正以「降本 70%、功耗降 90%、性能提升 4-10 倍」的硬核实力,成为 AIoT、智能驾驶、边缘计算等领域的关键推手。据 IDC 预测,未来 5 年存内计算市场规模将暴增 10 倍,2025 年全球芯片出货量将突破 1 亿颗,一场算力革命已箭在弦上。

开发者集结号:浙大专场活动亮点抢先看

3 月 15 日,浙江大学紫金港校区迎来一场 AI 技术盛宴!由 存算一体开发者社区与浙大人工智能协会联合主办的「存内计算驱动 AI 算力与应用生态链创新」专场活动,汇聚产学研顶尖力量:

存算一体开发者社区首个聚焦存算一体的开发者社区,联合高校,研究院与企业,依托前沿算力架构,首发技术开源与实战训练营,构建全链路生态。 通过开源生态、沉浸式实训与产学研协同,降低技术门槛,加速算力创新商业化。聚焦大模型、AIOT等场景,助力开发者实现从创意到落地的价值跃迁,共塑存算一体新未来。https://cimbbs.com/web/

  • 前沿洞察:Rokid 高级产品技术总监赵维奇解析《AI+AR 人机交互产品的探索与实践》,知存科技算法专家叶小培深度解读《面向多模态的存内计算应用生态系统》。
  • 实战进阶:Gitcode G-Star 项目负责人吕叶探讨开源 AI 的核心价值,更有「存内计算训练营」手把手教你在开发板上部署 OpenData Lab 数据集。
  • 生态联动:Rokid、知存科技、OpenDatalab 等领军者齐聚,从多模态大模型到跨语言智能工具,打通 AI 全链路创新。

一、《AI+AR 人机交互产品的探索与实践》—— 赵维奇(Rokid 高级产品技术总监、全球开发者生态负责人)

赵维奇的分享聚焦于 AR 与 AI 深度融合的技术突破与场景落地,核心围绕 Rokid 在 “下一代个人计算终端” 领域的实践展开:

  • 技术底层架构:详细介绍了 Rokid 自研的空间操作系统 YodaOS-Master,以及芯片、光学模组、手势交互等软硬一体化能力。该系统实现了场景感知、空间调度、多模态交互的全链路协同,为 AR 设备提供了稳定高效的底层支撑。
  • 产品创新特性:以 Rokid AR Lite 为例,阐述了 “轻量化 + 强性能” 的设计理念 —— 等效 6 米外 300 吋高清大屏的视觉体验、三联屏多任务并行能力、逐帧级防抖的 “运动模式”,解决了传统 AR 设备 “笨重”“画面抖动” 的痛点,让用户可在床、沙发、户外等多场景自由使用。
  • 场景落地案例:结合与《黑神话:悟空》的合作,展示了 AR 如何打破 “实体屏幕边界”—— 通过空间融合技术让游戏角色 “走进” 现实空间,用户可通过手柄 + AR 眼镜实现随时随地的沉浸式战斗,重新定义了 3A 游戏的交互形态。
  • 开发者生态构建:提出 “AR+AI 开发者协同计划”,开放 Rokid AR 设备的开发接口与工具链,支持开发者基于 AR 终端开发教育、办公、娱乐等垂直场景应用,降低创新门槛。

二、《面向多模态的存内计算应用生态系统》—— 叶小培(知存科技算法专家)

叶小培的演讲系统串联了多模态技术与存内计算的协同逻辑,结合技术原理与实践案例展开:

  • 多模态技术核心解析

    • 定义:多模态是通过整合文本、图像、音频等多类型数据提升系统理解能力的技术,当前以多模态大模型为核心形态(如 DeepSeek-VL)。
    • 优势:信息互补(如文本描述 + 图像细节)、鲁棒性增强(某一模态缺失时其他模态补位)、性能跃升(融合后任务准确率显著提升)。
    • 案例:以 DeepSeek-VL 为例,详解其 “混合视觉编码器(SAM-B 负责语义识别 + SigLIP-L 负责视觉定位)+ 视觉 - 语言适配器 + 大语言模型” 的三层架构,以及三阶段训练逻辑(建立视觉 - 语言关联→平衡多模态比例→增强指令遵循能力),展示多模态模型如何实现跨模态理解(如根据图像创作七言绝句)。
  • 存内计算技术支撑

    • 痛点破解:直指冯诺依曼架构 “内存墙”“功耗墙” 问题 —— 数据在存储器与处理器间频繁传输导致 62.7% 的功耗浪费,存内计算通过 “原位存储 + 原位计算” 消除数据搬运,实现算力效率跃升。
    • 技术优势:相同算力下成本降 70%、功耗降 80%-90%,性能较传统芯片提升 4-10 倍,尤其适配多模态大模型 “海量数据并行计算” 的需求。
  • 协同生态展望:提出 “多模态 + 存内计算” 的应用路径 —— 存内计算芯片为多模态模型提供高能效算力支撑,使其在端侧(如 AR 设备、智能终端)实现轻量化部署,举例说明存内计算如何支持端侧设备实时处理图像 + 文本 + 音频的融合任务。

三、《用 AI 重塑我的工作流》—— 许文豪(浙江大学人工智能协会负责人)

许文豪的分享以 “Agentic Workflow(智能代理工作流)” 为核心,结合实操案例解析 AI 如何重构任务流程:

  • 工作流的本质与 AI 变革

    • 传统工作流痛点:复杂任务拆解低效、重复操作耗时、跨工具协作繁琐(如数据处理→分析→可视化需多工具切换)。
    • AI 破局逻辑:通过 “大模型 + 规划 + 记忆 + 工具” 的 Agent 架构,将复杂任务拆解为可执行的子步骤,实现流程自动化与智能化。
  • 四大核心设计模式

    • Reflection(反思优化):以 “代码编写 + 审查” 为例,通过两个 Agent 博弈(一个生成代码、一个审查优化),迭代提升输出质量。
    • Tool Use(工具调用):如 Kimi Chat 通过网页搜索、代码执行工具获取实时信息,解决大模型 “知识滞后” 问题;再如 AI 编程工具 Cursor 通过自然语言生成代码,实现 “需求→代码” 一步跳转。
    • Planning(任务规划):以 “生成同姿势女孩读书图像并语音描述” 为例,Agent 自动拆解步骤(姿势识别→图像生成→文本转语音),调用对应模型(openpose→vit-gpt2→fastspeech)完成流程。
    • Multiagent Collaboration(多代理协作):参考 ChatDev 工具,让 Agent 扮演 CEO、产品经理、工程师等角色,协同开发应用(如五子棋游戏),效率远超单 Agent。
  • 实战案例分享

    • 语音笔记工作流:通过 iOS 快捷指令唤醒听写,AI 自动润色文本、提取关键词并存入备忘录,解决 “灵感转瞬即逝” 的痛点。
    • 数据分析自动化:输入原始数据后,AI 自动生成 Python 脚本、绘制可视化图表(如小红书互动指标分布),将分析周期从小时级压缩至分钟级。
  • 人机协同边界:强调 AI 并非替代人类,而是通过 “嵌入式(辅助信息)→副驾驶(协同决策)→智能代理(全流程执行)” 三级模式,释放人类创造力,核心价值公式为 “AI 效率 + 方法论 × 人性洞察”。

四、《当我们讨论 "开源 AI" 时,我们在讨论什么》—— 吕叶(Gitcode G-Star 项目负责人)

吕叶的演讲聚焦开源生态对 AI 技术落地的核心价值,结合存内计算领域实践展开:

  • 开源 AI 的核心命题

    • 降低创新门槛:通过开源工具、数据集、模型,让中小企业与开发者无需重复 “造轮子”,快速切入技术研发(如存内计算社区开源的 witin-nn 工具,基于 PyTorch 实现模型到存算阵列的映射,简化开发流程)。
    • 促进协同创新:开源生态打破企业与高校的技术壁垒,举例说明 GitCode 与存内计算社区合作的 “知存科技杯” 竞赛,通过开源数据集与评估标准,吸引全球开发者共同优化存算架构。
  • 存内计算领域的开源实践

    • 工具链开源:如模型映射工具(支持 ONNX 模型中 Conv 算子参数提取、存算阵列权重排布优化)、模拟器(测试排布合理性与执行效率),配套完整文档与示例代码。
    • 数据集共享:联合 OpenDatalab 开源 “万卷丝路” 多语言语料库,为多模态模型训练提供跨语言数据支撑,提升模型泛化能力。
  • 开源生态的挑战与应对

    • 挑战:技术碎片化、维护成本高、商业价值平衡难。
    • 解法:建立标准化协作框架(如统一模型接口、测试基准),通过 “社区贡献者激励计划”(如荣誉认证、资源倾斜)吸引持续参与,实现 “开源共享→技术迭代→产业落地” 的正向循环。

通过四场演讲,活动从 “技术底层(存内计算)→交互形态(AR+AI)→流程重构(AI 工作流)→生态支撑(开源)” 全维度展现了 AI 技术的创新路径,为开发者提供了从理论到实践的完整参考。

存算一体开发者社区:你的全链路 AI 生态后盾

作为以开发者为中心的新一代 AI 硬件社区,社区已汇聚 1.4 万用户(含 5K 资深开发者),预计年内规模将突破 3 万。在这里,你能获得:

  • 技术硬支撑:从国际顶刊论文解读(ISSCC、DAC 等)到存算阵列、存储介质等核心技术解析,配套在线课程与技术文档一键获取。
  • 开源与实战:首个存内计算软件工具开源,提供完整开发文档与示例代码;「存内训练营」邀行业专家带队,从模型映射到部署实操全程护航。
  • 生态资源池:联动 AWS、GitCode 等平台,与智谱 AI、Coze 等大模型企业探索应用场景,更有「知存科技杯」等竞赛万元奖金等你拿。

更多开发者认识到存内计算技术的巨大潜力,纷纷表示将积极参与到相关技术的研发与应用中,共同探索 AI 新力量,推动智能时代的进步与发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值