实习生的AI学习日记:从Prompt Engineering到RAG系统实战

实习生的AI学习日记:从Prompt Engineering到RAG系统实战

第一天:初识大语言模型

作为一名刚接触AI技术的实习生,我对大语言模型(LLM)充满了好奇。导师推荐我从OpenAI的ChatGPT开始学习,通过API调用感受其强大的文本生成能力。

import openai

response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": "请用一句话解释什么是大语言模型?"}]
)
print(response.choices[0].message.content)

这段代码展示了如何通过OpenAI API调用ChatGPT模型。model参数指定了模型版本,messages则是对话的上下文。

第二天:Prompt Engineering初探

今天学习了Prompt Engineering,发现提示词的设计对模型输出影响巨大。比如,明确的指令和上下文可以显著提升回答质量。

prompt = """
你是一名AI助手,请根据以下问题提供专业回答:
问题:如何优化大语言模型的提示词?
"""
response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": prompt}]
)
print(response.choices[0].message.content)

通过添加角色和任务描述,模型的回答更加精准。

第三天:向量数据库与语义检索

导师介绍了向量数据库(如Milvus)和语义检索技术。我尝试将文本转换为向量并存储到Milvus中,实现高效的语义搜索。

from sentence_transformers import SentenceTransformer
import pymilvus

model = SentenceTransformer("all-MiniLM-L6-v2")
embeddings = model.encode(["大语言模型的应用场景"])

# 连接Milvus并插入向量
conn = pymilvus.connections.connect(host="localhost", port="19530")
collection = pymilvus.Collection("text_collection")
collection.insert([embeddings])

第四天:RAG系统实战

今天动手实现了一个简单的RAG(检索增强生成)系统,结合了语义检索和大语言模型生成能力。

# 伪代码示例
def rag_system(query):
    # 1. 语义检索
    results = semantic_search(query)
    # 2. 生成回答
    prompt = f"根据以下上下文回答问题:{results}\n问题:{query}"
    response = generate_response(prompt)
    return response

总结

这一周的学习让我对大语言模型及其应用有了更深入的理解。从基础的API调用到复杂的RAG系统,每一步都充满了挑战和乐趣。接下来,我计划继续探索Agent框架和多轮对话记忆技术!

内容概要:本文详细探讨了基于阻尼连续可调减振器(CDC)的半主动悬架系统的控制策略。首先建立了CDC减振器的动力学模型,验证了其阻尼特性,并通过实验确认了模型的准确性。接着,搭建了1/4车辆悬架模型,分析了不同阻尼系数对悬架性能的影响。随后,引入了PID、自适应模糊PID和模糊-PID并联三种控制策略,通过仿真比较它们的性能提升效果。研究表明,模糊-PID并联控制能最优地提升悬架综合性能,在平顺性和稳定性间取得最佳平衡。此外,还深入分析了CDC减振器的特性,优化了控制策略,并进行了系统级验证。 适用人群:从事汽车工程、机械工程及相关领域的研究人员和技术人员,尤其是对车辆悬架系统和控制策略感兴趣的读者。 使用场景及目标:①适用于研究和开发基于CDC减振器的半主动悬架系统的工程师;②帮助理解不同控制策略(如PID、模糊PID、模糊-PID并联)在悬架系统中的应用及其性能差异;③为优化车辆行驶舒适性和稳定性提供理论依据和技术支持。 其他说明:本文不仅提供了详细的数学模型和仿真代码,还通过实验数据验证了模型的准确性。对于希望深入了解CDC减振器工作原理及其控制策略的读者来说,本文是一份极具价值的参考资料。同时,文中还介绍了多种控制策略的具体实现方法及其优缺点,为后续的研究和实际应用提供了有益的借鉴。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值