实习生的AI学习日记:从Prompt Engineering到RAG系统实战
第一天:初识大语言模型
作为一名刚接触AI技术的实习生,我对大语言模型(LLM)充满了好奇。导师推荐我从OpenAI的ChatGPT开始学习,通过API调用感受其强大的文本生成能力。
import openai
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "请用一句话解释什么是大语言模型?"}]
)
print(response.choices[0].message.content)
这段代码展示了如何通过OpenAI API调用ChatGPT模型。model
参数指定了模型版本,messages
则是对话的上下文。
第二天:Prompt Engineering初探
今天学习了Prompt Engineering,发现提示词的设计对模型输出影响巨大。比如,明确的指令和上下文可以显著提升回答质量。
prompt = """
你是一名AI助手,请根据以下问题提供专业回答:
问题:如何优化大语言模型的提示词?
"""
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}]
)
print(response.choices[0].message.content)
通过添加角色和任务描述,模型的回答更加精准。
第三天:向量数据库与语义检索
导师介绍了向量数据库(如Milvus)和语义检索技术。我尝试将文本转换为向量并存储到Milvus中,实现高效的语义搜索。
from sentence_transformers import SentenceTransformer
import pymilvus
model = SentenceTransformer("all-MiniLM-L6-v2")
embeddings = model.encode(["大语言模型的应用场景"])
# 连接Milvus并插入向量
conn = pymilvus.connections.connect(host="localhost", port="19530")
collection = pymilvus.Collection("text_collection")
collection.insert([embeddings])
第四天:RAG系统实战
今天动手实现了一个简单的RAG(检索增强生成)系统,结合了语义检索和大语言模型生成能力。
# 伪代码示例
def rag_system(query):
# 1. 语义检索
results = semantic_search(query)
# 2. 生成回答
prompt = f"根据以下上下文回答问题:{results}\n问题:{query}"
response = generate_response(prompt)
return response
总结
这一周的学习让我对大语言模型及其应用有了更深入的理解。从基础的API调用到复杂的RAG系统,每一步都充满了挑战和乐趣。接下来,我计划继续探索Agent框架和多轮对话记忆技术!