自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1521)
  • 收藏
  • 关注

原创 【AI大模型】Ollama部署本地大模型DeepSeek-R1,交互界面Open-WebUI,RagFlow构建私有知识库

本文介绍了DeepSeek、Ollama、open-webui和RagFlow等AI工具的关键信息。DeepSeek是一家专注于AGI的中国科技公司,提供大语言模型和多模态AI解决方案;Ollama是本地部署大模型的工具,支持多种开源模型;open-webui提供了可视化界面管理本地模型;RagFlow则专注于知识库问答系统。文章还详细说明了各工具的安装配置方法、应用场景及优势,为开发者提供了本地化部署AI模型的完整指南。

2025-07-12 11:11:55 773

原创 RAG评估方法-四种方法、两个自动化评估工具,中文/英文RAG评估数据集

当前RAG模型的评估主要围绕三个质量指标(上下文相关性、答案真实性、答案相关性)和四种核心能力(噪声鲁棒性、负面拒绝、信息整合、反事实鲁棒性)展开。主要评估工具包括RGB、RAGAS、RECALL和ARES,它们分别通过构建特定测试集(如噪声文档、反事实数据)和自动化评分方法(如准确率、拒绝率、BLEU等)来衡量模型表现。其中RGB和RAGAS提供开源数据集和代码,侧重不同语言(中英文)和场景的评估;RECALL专注于反事实知识鲁棒性;ARES则复现了RAGAS的指标框架。这些工作为RAG系统的优化提供了标

2025-07-12 09:15:00 608

原创 【AI落地应用实战】DeepSeek大模型应用探讨与RAG技术全景——从实验室榜单看向真实业务场景

今年春节期间最热的话题莫过于DeepSeek的横空出世!这家于2023年成立的人工智能基础技术研究企业,在今年1月20日正式开源其R1推理模型,在数学、代码、自然语言推理等任务上,以极低的成本实现了性能比肩OpenAI-o1正式版,甚至在某些方面超越了o1。

2025-07-11 14:28:17 870

原创 大模型应用之RAG详解,RAG保姆级教程,收藏这篇就够了!

RAG(检索增强生成)技术通过结合大语言模型与外部知识检索,解决了传统模型知识更新成本高、易产生幻觉等问题。该技术由Facebook于2020年提出,核心流程包括索引、检索和生成三个步骤。相比微调模型,RAG具有知识更新实时、外部知识利用高效等优势,但也面临检索质量与计算资源等挑战。根据复杂度可分为初级、高级和模块化RAG三类,其中模块化RAG引入更多功能模块,灵活性更强。RAG技术为AI应用提供了更安全、高效的知识整合方案,特别适合需要动态数据支持的场景。

2025-07-11 13:55:07 243

原创 开源VS闭源:谁将主宰AI的未来战场?

【摘要】科技界正掀起一场开源与闭源的激烈博弈。DeepSeek通过全面开源AI大模型,打破OpenAI等闭源垄断,引发行业震动。开源模式允许全球开发者共同改进技术,加速创新,而闭源则可能因技术壁垒被超越。历史证明,开源能构建强大生态(如安卓占70%手机市场),而闭源(如苹果iOS)依赖硬件体验获利。DeepSeek的开源策略不仅推动行业标准,也通过云服务等实现商业价值。这场变革表明,在AI时代,开源或将成为技术发展的主流路径。

2025-07-10 11:47:08 891

原创 深度剖析DeepSeek大模型:技术架构详览、应用场景探索

DeepSeek大模型技术概览与应用前景 核心摘要 DeepSeek是由中国深度求索团队研发的高效大语言模型,以轻量化参数架构、多模态融合与垂直领域优化为特色。其技术亮点包括: 高效架构:优化Transformer结构,集成MoE混合专家系统,结合动态路由与稀疏注意力降低计算成本 多模态能力:统一文本、图像、视频表征空间,支持VQA、工业质检等跨模态任务 场景落地:在金融客服(解决率↑40%)、医疗诊断(HIPAA合规)、教育辅导等领域实现深度应用 竞争优势 相比传统大模型(如GPT-4),DeepSeek

2025-07-08 11:29:21 774

原创 DeepSeek本地部署+投喂数据训练AI教程!!

DeepSeek-R1是由深度求索研发的免费开源推理模型,支持本地部署,无使用限制。该模型擅长数学、代码和自然语言推理,提供1.5b至671b多种规模选择。安装教程涵盖Windows和Mac系统,包括Ollama环境配置、模型下载及AnythingLLM软件设置。用户可通过投喂数据(如PDF、TXT等文件)训练AI,提升问答准确性。实测显示,模型能正确处理数值比较等任务,并支持聊天记录管理。注意:首次使用需下载模型文件(约1-20GB),建议根据硬件配置选择合适版本。

2025-07-08 10:38:15 940

原创 【保姆级教程】本地私有化RAG知识库搭建:基于Ollama+AnythingLLM的详细指南

RAG(检索增强生成)是一种结合信息检索与语言模型的技术,通过检索外部知识库来提升大模型的回答准确性,解决大模型知识局限、幻觉和数据安全问题。其发展经历三个阶段:基础阶段Naive RAG、优化检索的Advanced RAG和模块化设计的Modular RAG。RAG工作流程包括数据准备(文档处理与向量化)和检索生成(利用检索信息指导回答生成),适用于问答、推荐系统等多个领域。该技术在不泄露私有数据的前提下,有效增强了模型的实用性和安全性。

2025-07-07 17:38:07 715

原创 DeepSeek全攻略:从零基础到精通的终极指南

摘要: Deep Seek是一款AI驱动的智能搜索与分析工具,能高效处理海量信息,适用于数据挖掘、知识管理等场景。本文提供15天从入门到精通的指南: 快速入门:3分钟完成注册,建议绑定手机号并设置高强度密码; 界面操作:掌握对话输入、历史记录管理及工具栏使用(如代码块插入); 实战演练:通过基础指令测试AI功能,如自我介绍、生成Python代码等。 帮助用户快速上手,提升信息处理效率。

2025-07-07 17:08:36 925

原创 从大模型落地金融业说起,生成式AI成为行业新助力

百度文心大模型4.0助力金融行业智能化转型 摘要:百度文心大模型4.0在金融领域取得突破性应用,通过与庖丁科技合作推出"庖丁解文ChatDOC"智能审核工具,有效解决券商IPO文档处理难题。该工具将400-500页招股书审核时间从2-3天缩短至即时处理,准确提取财务指标等关键信息,并支持自然语言问答。百度智能云千帆平台提供算力支持,已吸引全球2万家企业使用,上架近70款AI原生应用。案例显示,生成式AI正加速渗透教育、法律等知识密集型行业,实现降本增效。百度通过"大模型+生态伙

2025-07-04 11:41:11 858

原创 【玩转 TableAgent 数据智能分析】股票交易数据分析+预测

TableAgent是一款基于Alaya大模型的智能数据分析工具,由九章云极DataCanvas公司开发,旨在实现零编码的自动化数据分析流程。用户只需输入分析目标,TableAgent即可自动完成数据筛选、格式转换、模型选择、代码生成及报告输出。其特点包括会话式分析、领域微调、私有化部署、透明化过程和企业级分析支持。本文以建设银行股票数据为例,从注册账号到实践操作,展示了TableAgent的核心功能和使用流程,帮助用户快速验证其自动化分析能力,探索大模型赋能的行业分析工具价值。

2025-07-04 10:55:04 765

原创 从零开始:LangChain 入门指南

文章摘要: LangChain是一个基于大语言模型(LLM)的开源应用开发框架,旨在简化GPT-3.5、GPT-4等模型的集成与开发流程。它解决了大模型应用中的两大核心问题:一是统一不同模型的接口(如ChatGPT、LLaMA等),降低切换成本;二是通过向量数据库支持长文本处理,突破LLM的token限制,实现外部知识的高效检索。其核心组件包括模型I/O、数据连接、记忆、链、代理和回调模块,为开发者提供灵活的工具链。目前支持Python和TypeScript,并已在多个开源项目中落地,成为大模型开发的主流框

2025-07-03 11:04:56 578

原创 一文入门最热的LLM应用开发框架LangChain

摘要: LangChain是以大型语言模型(LLM)为核心的开发框架,由Harrison Chase于2022年开源,迅速成为热门工具。它解决了GPT等模型的局限性,如数据滞后、token限制和联网问题,同时整合向量数据库、外部知识等组件,支持高效开发智能应用。LangChain包含六大模块:模型(Chat Models、Embeddings等)、提示、索引、记忆、链和代理,支持Python和Node.js,降低了LLM应用开发门槛。其嵌入功能可将文本转化为向量,便于相似性检索,适用于问答和文档处理场景,成

2025-07-03 09:30:00 1511

原创 基于LangChain的优秀项目资源库

在AI盛起的当下,各类AI应用不断地出现在人们的视野中,AI正在重塑着各行各业,LangChain是从事AI应用开发的人员或多或少都会接触到的框架。LangChain是一个令人惊叹的框架,可以在极短的时间内完成LLM项目,其生态系统正在快速发展。本文主要内容是一个LangChain资源库,里面罗列了大大小小很多个基于LangChain框架的优秀项目,包括低代码、服务、代理、模板等工具类,还有像知识管理、聊天机器人等开源项目,还包括像视频、文章等AI学习资源,建议大家点赞收藏。

2025-07-02 14:03:48 886

原创 AI 进阶实战 | 走进大模型(LLM)+智能体(Agent)+提示词(Prompt)

AI大模型实战:从智能问答到行业应用 本文介绍了如何利用LLM大模型(如KIMI)、智能体Agent和提示词Prompt技术构建带记忆功能的智能问答系统。通过FastAPI框架和Redis数据库实现对话存储与上下文关联,展示了多语言翻译和语义理解的实际应用案例。文章还探讨了RAG技术如何结合历史对话记录提升回答质量,并强调了大模型人才的职业机遇。最后提供了AI大模型学习资源,帮助读者掌握这一前沿技术,抓住行业变革带来的职业发展机会。

2025-07-02 11:24:36 821

原创 怎么看AI大模型(LLM)、智能体(Agent)、知识库、向量数据库、知识图谱,RAG,AGI 的不同形态?

AI智能体与知识管理:解锁超级个体的技术路径 在AI时代,智能体(Agent)正成为大模型应用的核心形态,结合知识库、向量数据库、RAG等技术,推动人工通用智能(AGI)的发展。本文梳理了关键概念: 大模型(LLM):通过海量数据训练实现复杂语言任务处理; 智能体:具备感知、记忆、推理和行动能力的自主系统; 知识管理技术:包括结构化知识库、高效检索的向量数据库、关联实体的知识图谱,以及提升生成质量的RAG技术。 这些技术的融合正在重塑行业应用,如医疗、搜索和推荐系统。掌握AI工具将成为未来竞争力的关键,而持

2025-07-02 11:23:05 600

原创 AI智能体(Agent)是什么?(非常详细),零基础入门到精通,看这一篇就够了

这篇博客介绍了AI智能体的基本概念和学习路径。主要内容包括: 学习AI智能体的必要性 - 提升工作效率和竞争力 大语言模型(LLM)与智能体的区别 - 智能体=LLM+规划+记忆+工具 智能体的核心特征 - 具备记忆、规划和使用工具的能力 构建智能体的基本原则 智能体的应用场景 零基础学习路径 - 提供学习路线图、视频教程、技术文档和面试题等资源 文章通过写作案例说明智能体如何自动化复杂任务,强调智能体将成为未来重要的技术方向。

2025-07-01 11:08:25 646

原创 一文搞懂:RAG、Agent与多模态的行业实践与未来趋势

大模型技术驱动产业变革:RAG、Agent与多模态的协同演进 大模型技术正成为数字化转型的核心引擎,通过检索增强生成(RAG)、智能体(Agent)和多模态技术的融合,突破传统AI的局限。RAG通过动态知识库扩展大模型的时效性与专业性;Agent赋予模型自主决策与任务协同能力;多模态技术实现跨模态语义理解。三者协同解决了数据时效性、隐私安全等关键挑战,在医疗、金融等领域催生深度变革。技术发展呈现两大趋势:多模态文档的统一化处理提升理解精度,记忆驱动RAG增强动态交互能力。MetaGPT、AutoGen等框架

2025-07-01 10:14:20 647

原创 OpenAI官方的Prompt工程指南:你可以这么玩ChatGPT

摘要:OpenAI官方发布提示工程指南,分享6大策略优化LLM输出效果。关键策略包括:1) 清晰指令需包含详细要求、示例、步骤说明;2) 提供参考文本减少幻觉;3) 任务分解简化复杂需求;4) 引导模型分步推理;5) 结合外部工具弥补短板;6) 系统性测试提示修改效果。指南强调精准提示能显著提升模型表现,并附赠AI大模型学习资料包(含104G资源、100套商业方案及视频教程)。

2025-06-30 17:25:14 901

原创 大模型基础知识汇总(非常详细)零基础入门到精通,收藏这篇就够了【Deepseek】

本文系统梳理了大语言模型(LLM)领域的100个核心概念,涵盖模型架构、训练方法、优化技术、评估调试等关键知识点。内容分为10大类:模型架构与基础概念(如LLM、AGI、Prompt工程等);面试常见问题解析;模型优化与压缩技术;训练方法与技术(包括预训练、微调、RLHF等);工具库使用;推理与应用场景;数据处理;评估指标;性能优化;以及伦理安全等。文章通过通俗易懂的术语解释,帮助读者快速掌握大模型的核心概念和技术要点,如Scaling Law、LoRA微调、多模态处理等,为学习和应用大模型技术提供实用参考

2025-06-30 16:32:58 877

原创 AI大模型学习路线:(非常详细)AI大模型学习路线,收藏这一篇就够了!

学习AI大模型需要从基础开始。数学方面需掌握线性代数、微积分和概率统计,推荐Khan Academy和MIT的课程。编程以Python为主,同时学习数据结构和算法,可通过Codecademy和Coursera入门。机器学习是核心,可借助吴恩达的《机器学习》课程和fast.ai的实践教程。进阶阶段需要学习深度学习框架如PyTorch/TensorFlow,并理解Transformer架构。最后通过实践项目巩固知识,如Kaggle竞赛或开源项目。持续学习前沿论文和社区资源是关键。

2025-06-28 14:26:39 920

原创 干货 :2025大模型学习路线图 (附大模型学习资源分享)

零基础想要入门大模型,langchain、transformer、bert这些是要学的,但是你上来就从这里开始学习,那你就大错特错了!作为一名有一定编程经验的程序员,我们真的没必要一上来就把时间精力全部投入到复杂的理论、纠结选择什么编程语言和各种晦涩的数学公式上,这样不仅容易让你精神内耗,最终演变成入门到放弃。所以我们们认识复杂新事物时,最无痛的途径应当是:感性认识现象->理解本质和原理->将所学知识用于解释新现象并指导实践。所以我给出的这条路径是:先学会如何使用大模型,然后了解其背后的原理,最

2025-06-28 11:16:13 536

原创 从理论到实践:RAG、Agent、微调等6种常见的大模型定制策略

大语言模型定制化策略综述 大语言模型(LLM)在通用任务上表现优异,但往往无法满足特定领域需求。为此,研究者开发了多种LLM定制策略,主要分为两类:不更新参数的冻结模型方法(如提示工程、RAG)和更新参数的调优方法(如微调、RLHF)。 六种主流定制策略按资源消耗排序: 提示工程:通过优化输入指令控制输出,包括零样本提示、思维链等技术 解码策略:调整采样参数(temperature/top_k/top_p)控制生成多样性 RAG检索增强:结合外部知识库提升专业问答能力 智能体框架:构建多步骤推理和工具调用能

2025-06-27 17:20:05 856

原创 5分钟在本地部署自己的deepseek大模型,小白也能搞定!

“ 还在为找不到好用的AI模型发愁?还在为复杂的部署流程头疼?别担心,今天教你5分钟在本地部署自己的deepseek大模型,小白也能轻松搞定!”只需三步,你就能拥有一个强大的本地AI助手!

2025-06-27 14:42:31 731

原创 AI大模型学习路线(2025最新)从零基础入门到精通,看完这一篇就够了

本文提供了一个从零基础到精通的大模型学习路线,分为四个阶段:初阶应用(10天)、高阶应用(30天)、模型训练(30天)和商业闭环(20天)。课程涵盖提示工程、RAG技术、模型微调、私有化部署等核心内容,并附带100套商业化方案、视频教程和200本PDF书籍等资源。通过系统学习,读者可以掌握大模型开发框架、训练垂直领域模型,并实现AI技术的商业化应用。

2025-06-27 11:37:32 809

原创 AI智能体扣子(Coze)工作流搭建,自动生成儿童绘本,保姆级教程

本文介绍了利用扣子工作流一键生成爆款儿童故事绘本短视频的方法。通过DeepSeek、即梦或豆包等AI工具,结合参考图进行文生图创作,实现批量自动化生成。文章详细讲解了在扣子平台创建智能体应用的完整流程,包括工作流配置、分镜头节点设置、故事节点添加、绘画节点选择等关键步骤,并提供了试运行方法。

2025-06-16 11:14:25 675

原创 唯庸私藏:14款 AI 时代必备工具全公开!(附使用理由)

唯庸私藏:14款 AI 时代必备工具全公开!(附使用理由)

2025-06-13 11:33:43 693

原创 建筑AI绘图Stable Diffusion安装及使用超全保姆级教学!

《Stable Diffusion保姆级教程:从安装到ControlNet应用》本文详细介绍了Stable Diffusion的安装与基础使用方法。内容涵盖:1)硬件要求(4G显存/50G硬盘);2)通过整合包一键安装流程;3)模型获取与管理(推荐Civitai网站);4)核心功能界面详解,包括提示词编写、参数设置(采样方法/迭代步数/种子值);5)实际案例演示建筑图像生成全流程;6)重点讲解ControlNet插件的应用价值。教程特别强调建筑领域的实用技巧,如提示词组合策略(环境+样式+材料等)和画质

2025-06-10 11:48:39 852

原创 Stable Diffusion下载安装教程(附安装包)快速部署 AI 绘画工具

Stable Diffusion下载安装教程(附安装包)快速部署 AI 绘画工具

2025-06-10 11:32:06 868

原创 Mac安装Stable Diffusion教程【超详细教程】附带安装包

这篇教程详细介绍了在MacBook Pro(M1Pro芯片,32GB内存)上安装Stable Diffusion的步骤。内容包括注意事项(如macOS上CLIP询问器和训练功能受限)、安装文件获取方式(通过微信公众号"一颗星宇宙"获取项目文件),以及自动安装方法。特别提醒Mac用户:使用GPU加速生成的图像质量与CPU相当,但训练过程会非常缓慢且消耗大量内存。文章还提供了故障排除建议,如Web UI无法启动或性能不佳时的解决方案。

2025-06-07 13:15:00 949

原创 stable diffusion图片资源分享和模型推荐,好用的模型有哪些呢?

这篇文章分享了AI绘画模型的推荐和使用经验,重点介绍了几个优质模型资源网站,包括Civitai、LiblibAI等。作者推荐了两款热门大模型:MajicMix Realistic(v5版本优化出色,适合生成真实人物)和ChilloutMix(亚洲审美风格)。文章强调模型"贵精不贵多",建议搭配LORA模型使用即可创作优质作品,并展示了部分生成效果图。

2025-06-07 09:15:00 675

原创 stable diffusion(安装以及模型的初步使用)

stable diffusion(安装以及模型的初步使用)

2025-06-06 11:00:23 992

原创 AI绘图提示词/咒语/词缀/关键词使用指南(Stable Diffusion Prompt 设计师操作手册)

AI绘图提示词/咒语/词缀/关键词使用指南(Stable Diffusion Prompt 设计师操作手册)

2025-06-06 10:39:34 720

原创 Stable Diffusion之最全详解图解

Stable Diffusion是2022年发布的文本生成图像AI模型,由StabilityAI等机构联合开发。该模型采用潜在扩散技术,能够在普通GPU设备上运行,支持文本生成图像、图像修复等功能。其核心原理包含扩散过程(逐步添加噪声)和逆向过程(从噪声重建图像)。相比DALL-E等云端模型,Stable Diffusion开源且本地可部署。模型架构包含VAE编码器、U-Net和文本编码器,通过Latent Diffusion在低维空间处理数据,显著提升效率。技术特点包括:基于CLIP的文本引导、扩散模型的

2025-06-05 11:28:51 773

原创 如何使用8G以下显卡训练Stable diffusion可用的Lora模型

文章主要介绍了如何使用Stable Diffusion和LoRa模型训练个性化AI绘画模型。作者详细分享了从Civitai下载模型、安装Kohya's GUI训练工具到数据预处理和参数配置的全过程。关键点包括:LoRa模型体积小但效果优秀,适合显存有限的显卡训练;训练前需要将图片预处理为512x512并添加标注;文章提供了具体的训练参数配置,特别针对RTX 3070等中端显卡做了优化。整个过程展示了利用开源工具实现个性化AI艺术创作的可行性,为爱好者提供了实用的技术指导。

2025-06-05 10:55:35 746

原创 Stable Diffusion建筑设计常用AI模型推荐

随着SDXL大模型的推出,StableDiffusion的发展将会迎来新的时代,与Midjourney相比,新的模型也呈现出了不俗的表现。在SD向SDXL过渡的时间节点上,总结下近期常用的几个大模型,供大家参考。点击文末阅读原文,可以查看下载地址和相关信息。

2025-06-04 11:08:47 1062

原创 Ai绘画工具,stable diffusion本地安装部署教程

本文详细介绍了Stable Diffusion本地安装部署教程。硬件要求包括16GB内存、60GB以上SSD硬盘和4GB显存NVIDIA显卡。安装步骤涵盖Python 3.10.6、Git环境配置,以及使用秋叶整合包进行一键部署。文章还提供了启动器配置建议(如xFormers优化)和常见问题解决方案。最后展示了该工具生成的精美AI绘画作品,并附赠全套学习资料(安装包、教程视频、提示词手册等)的获取方式。

2025-06-03 09:15:00 941

原创 Stable-DiffusionLoRA模型训练教程(新手篇)|LoRA训练个人经验总结与复盘

本文分享了LoRA训练的经验与步骤,适合新手入门。LoRA是一种低秩适配器技术,可降低大模型微调的门槛,使普通用户也能在家用电脑上训练模型。训练流程包括:明确目的(具象类或泛化类)、收集素材(数量与质量要求不同)、处理素材(统一尺寸、生成与优化标签)、调整参数并开始训练。关键工具推荐StableDiffusionWebUI和BooruDatasetTagManager。训练时需注意重复次数和轮数的设置,不同类别需采用不同策略。

2025-05-30 14:00:00 545

原创 超详细的Stable Diffusion(SD)本地部署教程,小白一看就会。

要:Stable Diffusion(SD)是一款AI图片生成工具,无需绘画或拍摄即可通过文字描述生成图像。安装要求包括:Win10/11系统、8G以上内存、NVIDIA显卡(4G显存起)及60G存储空间。推荐使用秋叶整合包进行安装,解压后运行启动器即可使用。测试显示,8G显存显卡生成一张图仅需11秒。学习资料包括安装包、视频教程、模型文件和提示词手册等全套资源,适合零基础用户快速掌握AI绘画技能。

2025-05-30 09:15:00 744

原创 最受C站大佬欢迎的3款SD模型,请在家长监督下使用!

【摘要】本文介绍了C站最受欢迎的3款AI绘画模型:1)Pony Diffusion V6 XL,擅长手部绘制,支持多种风格创作;2)Animagine XL 3.1,专精动漫风格,附带2000+提示词;3)下载量冠军Juggernaut XL,全能型模型适配各类风格。文末提供全套AI绘画学习资源包(含安装包/教程/提示词手册),适合零基础用户系统学习,可免费领取。

2025-05-29 14:00:00 886

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除