我们对这个世界的认知是多元的,但站在哲学家的角度看,基于不同的目的,它又是高度凝练的。
纽约大学宗教历史学教授詹姆斯·卡斯在著名的《有限与无限的游戏》中给我们提供了一个认知世界的新观点,他将世界比作“游戏”并区分为有限游戏和无限游戏。有限游戏以取胜为目的,无限游戏以延续游戏为目的。有限游戏的目的就是为了赢,期待在短周期内获利;而无限游戏则为了探索搭建一个生态,并不断完善、健全、提升,让每个参与者有获得感。
时代允许有限游戏的形式存在,但我认为时代更召唤和奖励那些坚持无限游戏原则的企业。最近,DeepSeek的爆火让我更确信了这一观点。
长久以来,全球的AI市场被OpenAI闭源模型左右,其创始人山姆·奥特曼曾信誓旦旦地宣称,闭源是为“保障AI安全”。这种闭源模式下,技术仿佛被高墙围起,其统治地位看似坚不可摧。
**然而,DeepSeek正在以“无限游戏”为出发点,重新定义大模型的规则。**2月21日,DeepSeek宣布启动“开源周”计划,陆续开源5个代码库,每日都有新内容解锁。这一操作,让很多人感叹DeepSeek让大模型进入“开源盛世”。
“在颠覆性的技术面前,闭源形成的护城河是短暂的。即使OpenAI闭源,也无法阻止被别人赶超。”DeepSeek创始人梁文锋曾这样解释选择开源的原因,“开源,发论文,其实并没有失去什么。对于技术人员来说,被follow是很有成就感的事。开源更像一个文化行为,而非商业行为……我们不会闭源。我们认为先有一个强大的技术生态更重要。”
DeepSeek开源后,震动了整个世界,历史的天平开始倾倒,开源和闭源的攻守易位,发生在不到1个月之内。
疑云:开源与闭源的“前世恩怨”
实际上,在科技发展的漫长岁月里,开源与闭源的故事,不断上演着观念的碰撞与变革。若想真正弄清楚这两者之间那场激烈的“大战”,我们还得从他们的“前世”说起。
**开源,简单来说就是把源代码、设计思路和底层架构这些关键信息都公开,让大家可以自由使用、修改和分发。**这一理念可以追溯到计算机发展的早期,那时候程序员们就像分享宝藏一样,自由地交换代码,慢慢形成了开源文化的雏形。
时光流转到20世纪80年代,一个关键人物的出现,让开源迎来了命运的转折。理查德・斯托曼,这位在麻省理工学院的资深程序员,日常工作中与代码为伴,对技术有着超乎常人的执着。有一天,他发现实验室新购置的打印机频繁卡纸,严重影响工作效率,想自己动手修改驱动代码,却发现代码被紧紧锁住,完全闭源加密了。
这一遭遇让斯托曼深感震惊与愤怒,他敏锐地意识到,软件正逐渐偏离其本应服务用户的初衷,沦为控制用户的工具。用户们只能像木偶一样,被动地接受那些黑箱程序所呈现的结果,却无法对其进行任何干预。斯托曼无法忍受这样的未来,决心发动一场“代码解放运动”,振臂高呼:“软件应该像空气一样自由!”这句口号瞬间在科技圈引起轩然大波。后来一群硅谷精英纷纷加入这场运动,并将其改名为“开源”(Open Source)。
如果说闭源就像买了一套成品乐高套装,只能按说明书组装;而开源则是拿到了所有的积木块和设计图纸,可以自由发挥创造新模型。开源看起来似乎应该成为科学界主旋律,但不管是基于思想固执,还是商业利益,总有闭源路线不停地筑起高墙。
以我们熟悉的微软为例,这个在科技领域举足轻重的巨头,在其发展早期也坚定地选择了闭源之路。当时,微软的创始人比尔・盖茨等高层坚信,软件是企业的核心资产,是获取商业利润的关键。于是,Windows操作系统以及配套的Office软件等,都是闭源的,使用需要付费。微软凭借这些产品,迅速在 PC 市场上攻城略地,构建起庞大的商业帝国。
但随着时代发展,开源技术影响力渐大,微软也开始转变策略。2010年代,在新任CEO萨提亚・纳德拉的带领下,微软逐渐拥抱开源,开源了部分代码,其中就包括重要的.NET框架,还在2018年收购了最大的开源项目托管平台 GitHub,在开源领域的投入与影响力与日俱增。
**而在移动操作系统领域,安卓开源与苹果闭源的对比堪称经典。**21世纪初,移动互联网的浪潮正悄然兴起。当时,谷歌敏锐地察觉到,占据手机操作系统主导地位的塞班系统有着诸多局限性,如操作不够便捷、应用生态不够丰富等。于是在2005年谷歌收购安卓公司后,秘密组建团队开发安卓系统。
两年后,谷歌宣布安卓系统开源,这一消息瞬间点燃了科技界的热情。众多手机厂商纷纷响应,它们依据自身产品定位和目标用户群体,对安卓系统进行个性化定制。
随着越来越多的开发者和手机厂商的参与,安卓生态系统迅速繁荣起来,谷歌通过开源安卓,成功获得了庞大的用户基础,并在应用商店、搜索等服务上实现了丰厚的商业盈利,成为开源与商业结合的成功典范。
苹果则截然不同,从始至终坚定走闭源路线。苹果对其 iOS 系统有着绝对的控制权,从系统功能设计到用户界面呈现,都经过精心雕琢。用户购买iPhone 后,能体验到简洁流畅且高度统一的操作体验,系统内应用也都经严格审核,保障质量与安全。但这也意味着用户选择受限,如果你想要在iPhone上安装一个未经苹果官方认可的应用,几乎是不可能的事情。
安卓与苹果在开源与闭源上的不同选择,各自成就了独特的发展轨迹,也为整个科技行业带来了多样的风景。
雷电:一场AI大模型的对决
**而在AI大模型领域,开源与闭源的博弈同样激烈。**OpenAI便是其中典型代表。其创始人山姆・奥特曼曾是开源的坚定支持者,2016年在一次峰会上,他强调“开源是打破垄断的利器,它让更多开发者能站在巨人的肩膀上创新”。在与马斯克共同签署OpenAI宪章时,也明确表示会开源,甚至专门取 “Open”之名,期望全球社区共同参与AI安全治理。
然而,随着GPT-3商业化取得巨大成功,OpenAI的态度发生了180度大转变。它开始将技术严密保护起来,采用基于token经济的收费模式。用户每次调用API都需按使用量付费,费用高昂,普通用户使用几次便花费不菲,长期下来难以承受。
这一转变引发广泛争议,马斯克对此极为不满,甚至起诉OpenAI,还提议将公司名字改成“ClosedAI”。除OpenAI外,其他大型AI实验室,如Anthropic,也选择完全封闭,停止发布研究论文,将所有成果视为专有财产。
在此情形下,AI领域掀起了一场开源运动。Meta的大模型Llama率先行动,但它的开源并不彻底。Llama仅公开了训练出的模型,训练代码和训练数据均未公开,且明确规定只能用于科研,禁止商用。这种“伪开源”操作引发开发者社区的强烈不满,Meta高管即便亲自出面解释,也难以平息众怒,代码仓库中不断增加的“issue”标签便是明证。
**与之形成鲜明对比的是,DeepSeek真正做到了全面开源。**它不仅发布了LLM(称为V3)和推理器(称为R1)的代码,还发布了详细的技术论文,把整个构建过程都毫无保留地分享出来,就像是给其他想要探索的人绘制了一份精确的地图。
DeepSeek开源的消息一经传出,全球开发者社区瞬间沸腾。在GitHub上,DeepSeek相关代码库的关注量和星标数呈爆炸式增长,短短几天内就吸引了数万名开发者参与讨论和贡献代码。在科研领域,许多高校和研究机构迅速将 DeepSeek的开源模型应用到自己的研究项目中,原本需要数月完成的实验,借助开源模型在短短几周内就取得了阶段性成果。企业层面同样积极响应,纷纷接入R1推理模型,根据不同客户的需求提供精准服务。
DeepSeek的开源之举,让硅谷巨头们用算力(烧钱)筑起的霸权,顷刻间被全球民众的对AI的热情撕碎。
风暴:巨头们开始重新站队
“我们不是有意成为一条鲶鱼,只是不小心成了一条鲶鱼。”梁文锋在接受36氪采访中曾表示。DeepSeek带来的压力肉眼可见,也让很多硅谷大佬和行业受益者不得不重新审视自己的立场。
2025年2月1日,奥特曼首次松口,承认OpenAI的闭源策略“站在了历史错误的一边”。18天后,这家估值超千亿美元的巨头宣布将启动新一轮开源计划,并在X平台上发起公开投票,询问用户下一个开源项目是做一个小型但仍需 GPU运行的 o3 - mini 级别模型,还是做最佳手机大小的模型。
**在国内,百度也同样坐不住了。**百度曾是闭源的坚定拥护者,李彦宏之前还直言“开源大模型是智商税”“开源模型只会越来越落后”,但现实很快给了他一个重击,面对压力,百度也开始开源。2月中旬,百度接连抛出一系列大动作:11日文小言(原文心一言)更新,正式接入DeepSeek-R1模型;13日宣布文心一言将于4月1日起全面免费;14日官宣未来几个月将推出文心大模型4.5系列,并计划在6月30日正式开源。
**这场由开源引发的鲶鱼效应,在全球掀起了一场超级风暴。**硅谷风投教父Marc Andreessen在播客中透露,现在几乎所有的大型科技公司、互联网公司和初创公司,要么基于DeepSeek进行业务重建,要么把DeepSeek的技术整合到自家产品中,要么深入研究其技术来改进现有的AI系统。就连Meta团队也在悄悄拆解DeepSeek,合法地借鉴其中的思路,力求让下一个版本的Llama在推理能力上不输给DeepSeek。
放晴:开源是大模型唯一出路?
如今,业内几乎所有参与者都一边倒地认为,开源将是大模型的唯一路径。
一位圈内人士对我说,这就像安卓系统发展历程的重演。就拿2024年全球智能手机市场份额的数据来说,安卓系统凭借开源构建起的庞大生态,一举拿下了约70%的市场份额,这充分彰显了开源生态那令人惊叹的强大竞争力。DeepSeek的掀起轩然大波,某种程度上就是世界的胜利。
**不过,也有人担心,开源会不会让企业失去竞争优势?**毕竟DeepSeek本来可以凭借技术优势,在一段时间内赚得盆满钵满。可如今却成了所有AI公司发展的基石。看看,就连向来对“闭源”嗤之以鼻的马斯克,在2月18日发布最新版Grok 3聊天机器人时,也变得小心翼翼起来,谨慎地表示,通常会在新模型发布时,才开源上一代模型。
在我看来,这种担心实在多余。咱们不妨把目光拉回到手机操作系统的战场。想当年,安卓靠着开源直接把曾经风光无限的塞班系统送进了历史的博物馆。再看苹果的iOS系统,虽说它选择了闭源之路,但人家卖的是硬件产品所带来的极致完美体验。闭源策略让苹果能够提高产品溢价,通过牢牢掌控软硬件生态,在App Store分发和服务订阅领域实现垄断盈利。
**而大模型呢,它所售卖的是“基础设施”能力。**在这个领域,开源不仅不会成为绊脚石,反而能成为助力企业腾飞的强劲东风,极大地扩大平台影响力,加速整个行业的发展进程,进而催生出更为庞大的生态发展机会。
**开源的关键在于控制行业标准。**以DeepSeek为例,它推出了R1,等它准备发布R2的时候,其他公司大概率得跟着升级。在这个不断升级的过程中,DeepSeek稳稳抓住了用户的注意力,影响了整个行业发展的节奏。一旦它成功树立起行业标准,那些闭源系统的生存空间便会如同被挤压的越来越小。
InfoQ总编辑王一鹏甚至直言,现在还坚持闭源的大模型企业很固执,就算做不到真开源,至少也得“装作在开源”。
从更长远的格局来看,大模型的研发成本极高,需要大量的数据、算力和人才。开源之后,全球的开发者都能一起参与改进,适配各种不同的场景,大大加速技术的迭代。而且,企业可以通过开源基础模型,吸引开发者基于其开发应用,再通过云服务(API调用收费)、定制化训练等高端服务来赚钱。
倘若一家企业坚持闭源,那它就如同置身于风暴中的孤舟,不仅时刻要提心吊胆,担心被开源的浪潮无情超越,更要命的是,当领先不再明显,用户会大量流失。毕竟闭源企业是一个商业团队,有营收压力和利润目标,而开源则有全球开发者的支持。从长远来看,开源团队无疑更具底气,更像是手握开启未来之门的钥匙。
新世界:未来已来
在AI这个充满无限可能的科技树面前,开源与闭源的对决还在继续。
或许很多人都幻想过,若有一天,AI超越人类,这个世界将会变成什么样子。而2025年初,DeepSeek的出现,让世界再次为之震撼与思考——我们离曾经的幻想,到底还有多远。耳边科技脚步轰隆,我们再伸伸手,似乎就可以触摸到未来。
开源模型让我们看到了它爆发出的强大生命力,就在这两年,多个行业或许都会在大模型的赋能下,呈现井喷式革新。
2018年,刘慈欣获得克拉克奖后说:“周围世界越来越像科幻小说,这种进程还在飞快加速,未来像盛夏的大雨,还不及撑伞便扑面而来。”而AI大模型就像一场扑面而来的大雨,做好准备的人,手中已举起雨伞,行走在被雨水冲刷过的新世界。
关于AI大模型技术储备
学好 AI大模型 不论是就业还是在工作技能提升上都不错,但要学会 AI大模型 还是要有一个学习规划。最后大家分享一份全套的 AI大模型 学习资料,给那些想学习 AI大模型 的小伙伴们一点帮助!
感兴趣的小伙伴,赠送全套AI大模型学习资料和安装工具,包含Agent行业报告、精品AI大模型学习书籍手册、视频教程、最新实战学习等录播视频,具体看下方。
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
