
AI大模型
文章平均质量分 94
Python程序员小泉
45岁老程序员,做一个技术和经验的分享者(专注Python和黑客技术)
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
大型语言模型 (LLM)全解读
大型语言模型(LLM)是一种基于深度学习算法的自然语言处理技术,通过转换器神经网络并行处理海量文本数据,实现语言理解与生成。其训练分为预学习和微调两阶段:预学习利用无监督方式从大规模数据中掌握语言规律,微调则针对特定任务优化模型性能。LLM通过单词嵌入技术理解语义关联,支持文本翻译、问答、代码生成等多种应用。训练方法包括零样本学习、少量样本学习和微调,使其能适应医疗、金融等领域的多样化需求。作为AI驱动的NLP核心,LLM正推动聊天机器人、智能助手等技术的快速发展。原创 2025-07-31 09:00:00 · 574 阅读 · 0 评论 -
用 Docker 和 Kubernetes 部署大模型(LLM)服务:从零到一全攻略【踩坑必读】
摘要 本文介绍了如何利用Docker和Kubernetes高效部署大语言模型(LLM)服务,包括HuggingFace的transformers、LLaMA等模型。重点讲解了Docker镜像构建、Kubernetes集群部署的实战技巧,并提供了轻量级镜像优化、并发请求处理等解决方案。文中还包含Java访问LLM API的代码示例,帮助开发者快速实现模型部署与调用。适合需要快速落地LLM服务的开发者参考,避免常见部署陷阱。【关键词:Docker部署、Kubernetes集群、LLM服务、Java调用】原创 2025-07-31 08:30:00 · 485 阅读 · 0 评论 -
ollama+open-webui,本地部署自己的大模型
本文详细介绍了如何基于ollama和open-webui在本地部署网页版大模型。主要内容包括:ollama框架的安装配置(支持Windows/Linux系统)、模型文件保存路径设置、大模型镜像拉取方法;以及open-webui的部署流程(Windows/Linux环境搭建、依赖安装和启动方法)。文章还提供了效果预览截图,并强调Windows系统需Win10及以上版本,同时给出了显卡兼容性说明和量化模型优势分析。最后附有注意事项,帮助用户顺利完成本地大模型的部署。原创 2025-07-30 11:02:28 · 715 阅读 · 0 评论 -
ollama 使用自己的微调模型
本文介绍了使用LoRA方法微调大语言模型的具体流程,包括基础模型选择(Chinese-Mistral-7B-Instruct-v0.1)、数据集准备(以中文弱智吧数据集为例)、训练环境配置、LoRA微调实现步骤(含tokenizer加载、数据处理、模型加载、参数设置等),并通过对比实验展示了微调后模型在特定任务上的效果提升。文章还涉及模型量化及使用ollama创建自定义模型的方法,为开发者提供了一套完整的大模型微调实践方案。原创 2025-07-30 11:01:05 · 492 阅读 · 0 评论 -
最强开源大模型?Qwen3 系列深度解析 + 本地部署指南!看到就是赚到!!
阿里云推出新一代开源大语言模型Qwen3,包含6个密集模型(0.6B-32B参数)和2个MoE模型(30B/235B参数),采用Apache 2.0许可。核心创新包括:1)支持"思考模式"与"非思考模式"动态切换,通过硬开关或指令(如/think)控制推理深度;2)推理能力显著提升,4B小模型性能媲美前代72B模型;3)支持128K长文本处理和多达119种语言。提供在线使用、API调用及本地部署(如Ollama)三种方式,特别适合资源受限场景下的高效AI应用。原创 2025-07-29 08:45:00 · 684 阅读 · 0 评论 -
【大模型实战篇】对Qwen3提到的thinking和no thinking混合思考模式的讨论
Qwen3团队开源了新一代大语言模型Qwen3系列,包含从0.6B到32B的8个不同规模版本。该模型采用四阶段训练框架:长思维链冷启动、推理强化学习、思维模式融合和通用强化学习,沿用了DeepSeek的稳健技术路线。实测显示,Qwen3-32B模型在4张A800 GPU上部署时,推理速度可达每秒40个token。文章详细介绍了模型部署过程和测试脚本,展示了其在实际应用中的表现。原创 2025-07-29 09:30:00 · 1665 阅读 · 0 评论 -
MLA——一文通透DeepSeek V2中的多头潜在注意力MLA:改进MHA,从而压缩KV缓存,提高推理速度(含让任何LLM都能用上MLA的方法)
本文系统解读DeepSeek系列大模型的技术演进,重点剖析DeepSeek-V2的创新设计。全文分为两部分:第一部分梳理DeepSeek LLM、DeepSeekMoE和DeepSeekMath的核心贡献;第二部分聚焦DeepSeek-V2的突破性架构——236B参数的稀疏MoE模型(仅激活21B参数/Token),详细解析其核心创新点"多头潜在注意力(MLA)"机制与优化的MoE结构。文章以"图文公式对应"的独特方式,深入浅出地阐释技术细节,既适合快速原创 2025-07-28 10:59:56 · 553 阅读 · 0 评论 -
一文通透各种注意力:从多头注意力MHA到分组查询注意力GQA、多查询注意力MQA
本文对比了三种注意力机制:多头注意力(MHA)、多查询注意力(MQA)和分组查询注意力(GQA)。MHA每个头独立计算K/V矩阵,导致内存消耗大;MQA共享K/V矩阵以提升推理速度但可能降低质量;GQA折中采用分组共享K/V,在保持MQA速度优势的同时接近MHA质量。实验表明GQA综合表现最优,已被LLaMA2、Mistral等主流模型采用。文章详细解析了MQA和GQA的实现原理,包括参数共享方式和矩阵运算细节,为优化大模型推理效率提供了重要参考。原创 2025-07-28 10:55:40 · 518 阅读 · 0 评论 -
手把手教你Ollama 安装部署教程,一键搭建本地大模型,不挑环境、不挑配置!
Ollama是一个跨平台工具,支持在Windows、Linux和MacOS上本地运行大语言模型。它提供了1700+预训练模型,包括Qwen、Llama等,支持多GPU并行推理和自定义模型参数配置。用户可通过简单命令安装运行,Windows用户下载安装包后验证命令窗口即可使用,Mac用户同样提供便捷的安装方式。Ollama降低了开发者使用大语言模型的门槛,是搭建AI应用和模型调优的理想工具。原创 2025-07-28 09:00:00 · 1285 阅读 · 0 评论 -
VideoLLaMB:长视频理解的新里程碑,超越传统模型
本文介绍了VideoLLaMB这一创新性的长视频理解框架。该框架通过记忆桥接层和递归记忆令牌等技术,有效解决了传统模型在处理长视频时存在的关键信息丢失问题。主要特点包括:专为长视频设计的理解能力、创新的记忆机制、场景分割算法等。应用场景广泛,涵盖视频内容分析、问答系统、视频字幕生成等领域。文章还详细介绍了框架的部署实践,包括模型下载、环境搭建及使用方式。VideoLLaMB为长视频理解带来了突破性进展,未来有望在更多领域发挥重要作用。原创 2025-07-26 09:30:00 · 967 阅读 · 0 评论 -
探索 LongWriter:突破长文本10000+字生成的语言模型
在自然语言处理领域,语言模型的发展日新月异。随着对长文本处理需求的不断增加,能够高效生成长文本的语言模型变得至关重要。LongWriter 作为一款由清华大学数据挖掘研究组(THUDM)开发的语言模型,以其出色的长文本生成原创 2025-07-26 09:00:00 · 842 阅读 · 0 评论 -
AutoGLM:智谱AI的创新,让手机成为你的生活全能助手
摘要: 智谱AI推出的AutoGLM是一款突破性AI智能体,实现了从语言理解到手机操作执行的跨越。其核心技术包括任务解耦、在线强化学习和跨应用API调用,能模拟人类点击、滑动等操作完成复杂任务。AutoGLM已应用于生活管理(订票/酒店)、社交互动、办公自动化、电商购物及客户服务等场景,显著提升效率。未来,随着5G/6G技术的发展,AutoGLM将更深度融入医疗、教育等领域,成为个性化智能伙伴。这款产品不仅重新定义人机交互方式,更标志着AI向实际执行能力的进化,为智能生活开启新篇章。原创 2025-07-25 10:47:57 · 611 阅读 · 0 评论 -
技术突破:llamafile一键部署大模型,释放AI潜力
摘要 llamafile是Mozilla推出的创新解决方案,通过将大型语言模型(LLM)及其运行环境封装为单一可执行文件,极大简化了模型的部署流程。该技术融合了llama.cpp和Cosmopolitan Libc等组件,支持Windows/macOS/Linux多平台运行,实现真正的一键部署。核心优势包括:无需复杂环境配置、独立可执行运行、简化模型分发、跨平台兼容性以及本地化处理保障隐私安全。虽然存在性能优化和GPU支持等局限性,但llamafile显著降低了AI模型的使用门槛,使非技术用户也能轻松运行大原创 2025-07-25 10:34:10 · 665 阅读 · 0 评论 -
ollama 使用自己的微调模型
本文介绍了如何通过LoRA方法微调大语言模型Chinese-Mistral-7B,并使用ollama创建专业化的对话模型。主要内容包括:1)选择并下载基础模型;2)准备高质量训练数据集;3)详细说明LoRA微调步骤,包括环境配置、训练脚本编写和参数设置;4)模型转换与量化方法;5)最终模型效果对比显示微调后的模型在特定领域表现更专业。文章提供了完整的训练流程和技术细节,适合想要定制专业化AI模型的开发者参考。原创 2025-07-24 14:15:00 · 1676 阅读 · 0 评论 -
ollama 使用自定义大模型
本文介绍了在Windows系统下如何将Safetensors格式的大模型转换为Ollama可用的自定义模型。主要内容包括:下载Ollama和llama.cpp源码并整合项目结构;安装Python依赖环境;以Chinese-Mistral-7B-Instruct模型为例,演示如何将分片模型文件合并为单个bin文件;通过CMake工具对模型进行量化压缩;最后创建Modelfile配置文件并运行模型。该流程为后续结合LoRA微调实现个性化大模型奠定了基础,同时解决了Windows系统下模型转换的技术难题。原创 2025-07-24 10:00:48 · 929 阅读 · 0 评论 -
RAG回答准确率暴涨300%!用Coze工作流进行数据结构化(附完整提示词)
摘要 本文探讨了检索增强生成(RAG)技术中数据结构化对提升召回率的关键作用。针对领域文献PDF解析的挑战,研究提出了一套完整的数据处理流程:首先使用MinerU工具进行文档清洗与多模态内容提取,消除噪声干扰;然后通过DeepSeek+Coze工作流实现智能化的章节分块与标注,确保语义完整性。实验验证表明,经过结构化处理的数据可显著提升RAG系统的召回率,为生成模型提供更准确的上下文信息。该方法为学术文献的知识库构建和智能检索提供了实用解决方案,对提升RAG在专业领域的应用效果具有重要参考价值。原创 2025-07-23 11:45:32 · 907 阅读 · 0 评论 -
RAG 全链路实战(1):RAG 快速入门
RAG技术:大模型应用开发的入门利器 RAG(检索增强生成)作为连接大模型与外部知识库的关键技术,正成为AI应用落地的热门方向。本专题开篇介绍了RAG的核心概念:通过向量检索技术将非参数化外部知识与大模型结合,有效解决模型幻觉、数据实时性等问题。文章详细剖析了RAG系统的四大核心组件(知识嵌入、向量数据库、检索器、生成器),并通过LlamaIndex框架快速搭建了一个基于《哪吒2》剧情的问答系统实例,展示了RAG如何增强模型在特定领域的回答能力。随着大模型上下文窗口的扩展,RAG技术是否会淘汰?本专题将持续原创 2025-07-23 11:11:24 · 935 阅读 · 0 评论 -
2025年传统程序员如何转行到AI大模型? AI大模型学习路线路径,巨详细!!
传统程序员转型AI大模型领域需要系统学习:1)掌握AI大模型基础概念如BERT、GPT等;2)夯实数学基础,包括线性代数、概率统计;3)精通Python编程及科学计算库;4)学习机器学习理论和深度学习框架(TensorFlow/PyTorch);5)强化数据处理与特征工程能力;6)通过实际项目积累经验。这一转型过程需要持续学习新技术,但程序员的编码基础能加速转型进程。原创 2025-07-22 14:30:31 · 459 阅读 · 0 评论 -
终于找到了!AI大模型学习路线图——从零基础到就业_ai大模型 技术路线图
终于找到了!AI大模型学习路线图——从零基础到就业_ai大模型 技术路线图原创 2025-07-22 11:40:39 · 758 阅读 · 0 评论 -
如何训练出一个大模型?只需要三步你也可以训练大模型!
本文介绍了大模型训练的三大关键步骤:预训练(Pretraining)、指令微调(Instruction Tuning)和对齐微调(Alignment Tuning)。预训练阶段通过海量无标注数据学习语言规律;指令微调采用PEFT技术(如LoRA)实现高效参数优化;对齐微调则通过RLHF等技术使模型输出符合人类偏好。文章还对比了PPO、DPO等强化学习算法的优劣,并指出大模型技术带来的职业机遇。最后提供了包含学习路线、商业化案例等资源的AI大模型资料包,可通过文末二维码免费领取。全文以技术流程解析为主,穿插了原创 2025-07-21 11:50:10 · 435 阅读 · 0 评论 -
如何学习训练大模型——100条建议(附详细说明)_如何训练自己的大模型
摘要: 本文系统介绍了大模型训练的完整流程与关键要素。首先强调需要掌握深度学习基础理论、编程技能和数据处理能力,并具备充足的计算资源。核心步骤包括:模型架构选择(可基于预训练模型)、超参数调优、分布式训练实施、训练过程监控与调试优化等。文章还重点讨论了模型部署、压缩、安全性和伦理法律考量等实践环节。建议采用渐进式学习路径,从小项目开始积累经验,同时保持对前沿研究的关注。通过持续实践、参与社区交流和开展可复现研究,不断提升深度学习能力,最终实现大模型在各领域的创新应用。原创 2025-07-21 11:35:10 · 779 阅读 · 0 评论 -
用通俗易懂的方式讲解:一文搞懂大模型 Prompt Engineering(提示工程)
本文全面介绍了提示工程(Prompt Engineering)的本质、原理和应用。提示工程是用户与AI模型交互的关键桥梁,本质上是一种新型"编程语言",通过精心设计的提示词(Prompt)指导AI模型执行多样化任务。其原理包括Prompt的五大构成要素(指示、上下文、例子、输入、输出)以及调优方法。应用方面重点介绍了链式思考提示(Chain-of-Thought)等先进技术。文章还提供了技术交流渠道和通俗易懂的讲解资源,帮助读者系统掌握这一AI时代的重要技能。原创 2025-07-18 11:14:10 · 288 阅读 · 0 评论 -
基于 Dify 和大语言模型打造小红书运营一条龙工作流
本文介绍了如何利用Dify平台和ChatGPT构建小红书内容自动化生成工作流。该工作流通过7个步骤实现:1)收集用户输入的主题、背景和语气;2)生成吸引人的标题;3)创作正文内容;4)提取封面前言文字;5)调用imgrender.net生成封面图;6)处理封面图URL;7)整合输出最终内容。整个过程展示了如何结合大语言模型和外部API实现从文字到图片的一站式内容生产,大大提升了社交媒体运营效率。文中包含详细的工作流节点截图和实现细节,适合想探索AI自动化内容创作的开发者参考。原创 2025-07-18 10:28:22 · 810 阅读 · 0 评论 -
DeepSeek 超全面指南!入门 DeepSeek 必看
最近,AI界出现了一匹黑马——DeepSeek。这个名字可能对很多人来说还比较陌生,但它已经在全球范围内引发了巨大的关注,甚至让一些科技巨头感到了压力。今天,就让我们一起走进DeepSeek的世界,看看它到底有多厉害!原创 2025-07-17 14:25:11 · 693 阅读 · 0 评论 -
油气行业人工智能大模型应用研究现状及展望
大模型技术在油气行业的应用现状与挑战 摘要:本文系统阐述了大模型技术(包括大语言模型、视觉大模型和多模态大模型)的概念及发展现状,综述了其在垂直领域的应用情况。针对油气行业,分析了当前大模型应用的初步探索,包括基于开源模型的产品开发、特定业务场景模型的研发等。同时指出油气行业在应用大模型时面临数据质量不足、研发成本高、算法自主可控等挑战。提出未来应聚焦主营业务需求,加强数据治理,推动算力建设,培养复合型人才,促进技术自主可控,以充分发挥大模型技术在油气行业的应用潜力。 关键词:基础模型;大语言模型;视觉大模原创 2025-07-16 14:28:26 · 932 阅读 · 0 评论 -
覆盖10大医疗应用场景!国产AI大模型应用典型案例盘点
AI大模型赋能医疗健康十大场景 人工智能技术正深刻变革医疗行业,AI大模型在十大核心场景展现卓越价值:1)智能诊疗:百度灵医、MedGPT等模型提升诊断准确性;2)个性化治疗:圆心科技源泉大模型实现精准患者管理;3)药物研发:晶泰科技、腾讯平台加速分子筛选;4)医学影像分析:北京天坛医院"龙影"模型0.8秒生成诊断意见;5)医疗质控:惠每科技模型自动检测病历缺陷;6)患者服务:百度AI药品说明书优化就医体验;7)医院管理:董奉大模型助力资源智能配置;8)教学科研:医渡科技模型缩短科研周期原创 2025-07-16 11:30:26 · 831 阅读 · 0 评论 -
大语言模型在行业中的应用:各行业的应用案例解析_大语言模型 应用场景
本文探讨了人工智能大语言模型在金融、医疗和教育三大行业的应用案例。在金融领域,大模型通过自然语言处理技术分析信用报告和还款记录,实现精准风险评估;医疗行业利用大模型处理病历文本,辅助疾病诊断和治疗方案推荐;教育领域则通过分析教学文本和用户反馈提供个性化学习服务。文章指出,随着技术进步,大模型将推动更多行业的智能化转型,率先掌握AI技术者将获得竞争优势。文末还提供了包含AI学习路线、实战项目和大模型教程等资源的免费领取方式,帮助读者从零开始掌握大模型技术。原创 2025-07-15 10:34:07 · 1073 阅读 · 0 评论 -
LLM(大语言模型)——大模型简介
大语言模型(英文:Large Language Model,缩写LLM),也称大型语言模型,是一种人工智能模型,旨在理解和生成人类语言。通常,大语言模型(LLM)指包含数百亿(或更多)参数的语言模型,这些模型在大量的文本数据上进行训练,例如国外的有GPT-3、GPT-4、PaLM、Galactica和LLaMA等,国内的有ChatGLM、文心一言、通义千问、讯飞星火等。在这个阶段,计算机的“大脑”变得非常巨大,拥有数十亿甚至数千亿的参数。这就像是将计算机的大脑升级到了一个巨型超级计算机。这让计算机可原创 2025-07-15 10:14:14 · 589 阅读 · 0 评论 -
【AI大模型】Ollama部署本地大模型DeepSeek-R1,交互界面Open-WebUI,RagFlow构建私有知识库
本文介绍了DeepSeek、Ollama、open-webui和RagFlow等AI工具的关键信息。DeepSeek是一家专注于AGI的中国科技公司,提供大语言模型和多模态AI解决方案;Ollama是本地部署大模型的工具,支持多种开源模型;open-webui提供了可视化界面管理本地模型;RagFlow则专注于知识库问答系统。文章还详细说明了各工具的安装配置方法、应用场景及优势,为开发者提供了本地化部署AI模型的完整指南。原创 2025-07-12 11:11:55 · 993 阅读 · 0 评论 -
RAG评估方法-四种方法、两个自动化评估工具,中文/英文RAG评估数据集
当前RAG模型的评估主要围绕三个质量指标(上下文相关性、答案真实性、答案相关性)和四种核心能力(噪声鲁棒性、负面拒绝、信息整合、反事实鲁棒性)展开。主要评估工具包括RGB、RAGAS、RECALL和ARES,它们分别通过构建特定测试集(如噪声文档、反事实数据)和自动化评分方法(如准确率、拒绝率、BLEU等)来衡量模型表现。其中RGB和RAGAS提供开源数据集和代码,侧重不同语言(中英文)和场景的评估;RECALL专注于反事实知识鲁棒性;ARES则复现了RAGAS的指标框架。这些工作为RAG系统的优化提供了标原创 2025-07-12 09:15:00 · 1008 阅读 · 0 评论 -
【AI落地应用实战】DeepSeek大模型应用探讨与RAG技术全景——从实验室榜单看向真实业务场景
今年春节期间最热的话题莫过于DeepSeek的横空出世!这家于2023年成立的人工智能基础技术研究企业,在今年1月20日正式开源其R1推理模型,在数学、代码、自然语言推理等任务上,以极低的成本实现了性能比肩OpenAI-o1正式版,甚至在某些方面超越了o1。原创 2025-07-11 14:28:17 · 887 阅读 · 0 评论 -
大模型应用之RAG详解,RAG保姆级教程,收藏这篇就够了!
RAG(检索增强生成)技术通过结合大语言模型与外部知识检索,解决了传统模型知识更新成本高、易产生幻觉等问题。该技术由Facebook于2020年提出,核心流程包括索引、检索和生成三个步骤。相比微调模型,RAG具有知识更新实时、外部知识利用高效等优势,但也面临检索质量与计算资源等挑战。根据复杂度可分为初级、高级和模块化RAG三类,其中模块化RAG引入更多功能模块,灵活性更强。RAG技术为AI应用提供了更安全、高效的知识整合方案,特别适合需要动态数据支持的场景。原创 2025-07-11 13:55:07 · 284 阅读 · 0 评论 -
开源VS闭源:谁将主宰AI的未来战场?
【摘要】科技界正掀起一场开源与闭源的激烈博弈。DeepSeek通过全面开源AI大模型,打破OpenAI等闭源垄断,引发行业震动。开源模式允许全球开发者共同改进技术,加速创新,而闭源则可能因技术壁垒被超越。历史证明,开源能构建强大生态(如安卓占70%手机市场),而闭源(如苹果iOS)依赖硬件体验获利。DeepSeek的开源策略不仅推动行业标准,也通过云服务等实现商业价值。这场变革表明,在AI时代,开源或将成为技术发展的主流路径。原创 2025-07-10 11:47:08 · 899 阅读 · 0 评论 -
深度剖析DeepSeek大模型:技术架构详览、应用场景探索
DeepSeek大模型技术概览与应用前景 核心摘要 DeepSeek是由中国深度求索团队研发的高效大语言模型,以轻量化参数架构、多模态融合与垂直领域优化为特色。其技术亮点包括: 高效架构:优化Transformer结构,集成MoE混合专家系统,结合动态路由与稀疏注意力降低计算成本 多模态能力:统一文本、图像、视频表征空间,支持VQA、工业质检等跨模态任务 场景落地:在金融客服(解决率↑40%)、医疗诊断(HIPAA合规)、教育辅导等领域实现深度应用 竞争优势 相比传统大模型(如GPT-4),DeepSeek原创 2025-07-08 11:29:21 · 863 阅读 · 0 评论 -
DeepSeek本地部署+投喂数据训练AI教程!!
DeepSeek-R1是由深度求索研发的免费开源推理模型,支持本地部署,无使用限制。该模型擅长数学、代码和自然语言推理,提供1.5b至671b多种规模选择。安装教程涵盖Windows和Mac系统,包括Ollama环境配置、模型下载及AnythingLLM软件设置。用户可通过投喂数据(如PDF、TXT等文件)训练AI,提升问答准确性。实测显示,模型能正确处理数值比较等任务,并支持聊天记录管理。注意:首次使用需下载模型文件(约1-20GB),建议根据硬件配置选择合适版本。原创 2025-07-08 10:38:15 · 1002 阅读 · 0 评论 -
【保姆级教程】本地私有化RAG知识库搭建:基于Ollama+AnythingLLM的详细指南
RAG(检索增强生成)是一种结合信息检索与语言模型的技术,通过检索外部知识库来提升大模型的回答准确性,解决大模型知识局限、幻觉和数据安全问题。其发展经历三个阶段:基础阶段Naive RAG、优化检索的Advanced RAG和模块化设计的Modular RAG。RAG工作流程包括数据准备(文档处理与向量化)和检索生成(利用检索信息指导回答生成),适用于问答、推荐系统等多个领域。该技术在不泄露私有数据的前提下,有效增强了模型的实用性和安全性。原创 2025-07-07 17:38:07 · 726 阅读 · 0 评论 -
DeepSeek全攻略:从零基础到精通的终极指南
摘要: Deep Seek是一款AI驱动的智能搜索与分析工具,能高效处理海量信息,适用于数据挖掘、知识管理等场景。本文提供15天从入门到精通的指南: 快速入门:3分钟完成注册,建议绑定手机号并设置高强度密码; 界面操作:掌握对话输入、历史记录管理及工具栏使用(如代码块插入); 实战演练:通过基础指令测试AI功能,如自我介绍、生成Python代码等。 帮助用户快速上手,提升信息处理效率。原创 2025-07-07 17:08:36 · 937 阅读 · 0 评论 -
从大模型落地金融业说起,生成式AI成为行业新助力
百度文心大模型4.0助力金融行业智能化转型 摘要:百度文心大模型4.0在金融领域取得突破性应用,通过与庖丁科技合作推出"庖丁解文ChatDOC"智能审核工具,有效解决券商IPO文档处理难题。该工具将400-500页招股书审核时间从2-3天缩短至即时处理,准确提取财务指标等关键信息,并支持自然语言问答。百度智能云千帆平台提供算力支持,已吸引全球2万家企业使用,上架近70款AI原生应用。案例显示,生成式AI正加速渗透教育、法律等知识密集型行业,实现降本增效。百度通过"大模型+生态伙原创 2025-07-04 11:41:11 · 863 阅读 · 0 评论 -
【玩转 TableAgent 数据智能分析】股票交易数据分析+预测
TableAgent是一款基于Alaya大模型的智能数据分析工具,由九章云极DataCanvas公司开发,旨在实现零编码的自动化数据分析流程。用户只需输入分析目标,TableAgent即可自动完成数据筛选、格式转换、模型选择、代码生成及报告输出。其特点包括会话式分析、领域微调、私有化部署、透明化过程和企业级分析支持。本文以建设银行股票数据为例,从注册账号到实践操作,展示了TableAgent的核心功能和使用流程,帮助用户快速验证其自动化分析能力,探索大模型赋能的行业分析工具价值。原创 2025-07-04 10:55:04 · 783 阅读 · 0 评论 -
从零开始:LangChain 入门指南
文章摘要: LangChain是一个基于大语言模型(LLM)的开源应用开发框架,旨在简化GPT-3.5、GPT-4等模型的集成与开发流程。它解决了大模型应用中的两大核心问题:一是统一不同模型的接口(如ChatGPT、LLaMA等),降低切换成本;二是通过向量数据库支持长文本处理,突破LLM的token限制,实现外部知识的高效检索。其核心组件包括模型I/O、数据连接、记忆、链、代理和回调模块,为开发者提供灵活的工具链。目前支持Python和TypeScript,并已在多个开源项目中落地,成为大模型开发的主流框原创 2025-07-03 11:04:56 · 589 阅读 · 0 评论