prompt-optimizer:帮助用户快速编写更高质量的提示词

提示词(Prompt)作为用户与大模型交互的核心要素,其设计质量直接影响大模型的输出效果和应用效能。你是否因提示词调试优化工作耗费大量时间而感到困扰?本文介绍一款提示词优化器 prompt-optimizer,可帮助用户快速编写更高质量的提示词,支持多种主流 AI 模型与自定义 API 地址,并可实时对比优化前后的效果

prompt-optimizer

图片项目地址:https://github.com/linshenkx/prompt-optimizer?tab=readme-ov-file,目前已 9.8 K stars

Prompt Optimizer是一个强大的AI提示词优化工具,帮助你编写更好的AI提示词,提升AI输出质量。支持Web应用、桌面应用、Chrome插件和Docker部署四种使用方式。

提示词优化应用示例

1、角色扮演对话:激发小模型潜力

在追求成本效益的生产或注重隐私的本地化场景中,结构化的提示词能让小模型稳定地进入角色,提供沉浸式、高一致性的角色扮演体验,有效激发其潜力。

图片

2、知识图谱提取:保障生产环境的稳定性

在需要程序化处理的生产环境中,高质量的提示词能显著降低对模型智能程度的要求,使得更经济的小模型也能稳定输出可靠的指定格式。本工具旨在辅助开发者快速达到此目的,从而加速开发、保障稳定,实现降本增效。

图片

3、诗歌写作:辅助创意探索与需求定制

当面对一个强大的AI,我们的目标不只是得到一个“好”答案,而是得到一个“我们想要的”独特答案。本工具能帮助用户将一个模糊的灵感(如“写首诗”)细化为具体的需求(关于什么主题、何种意象、何种情感),辅助您探索、发掘并精确表达自己的创意,与AI共创独一无二的作品。

图片

核心特性
  • 🎯 智能优化:一键优化提示词,支持多轮迭代改进,提升AI回复准确度
  • 🔄 对比测试:支持原始提示词和优化后提示词的实时对比,直观展示优化效果
  • 🤖 多模型集成:支持OpenAI、Gemini、DeepSeek、智谱AI、SiliconFlow等主流AI模型
  • ⚙️ 高级参数配置:支持为每个模型单独配置temperature、max_tokens等LLM参数
  • 🔒 安全架构:纯客户端处理,数据直接与AI服务商交互,不经过中间服务器
  • 💾 隐私保护:本地加密存储历史记录和API密钥,支持数据导入导出
  • 📱 多端支持:同时提供Web应用、桌面应用、Chrome插件和Docker部署四种使用方式
  • 🎨 用户体验:简洁直观的界面设计,响应式布局和流畅交互动效
  • 🌐 跨域支持:Vercel部署时支持使用Edge Runtime代理解决跨域问题
  • 🔐 访问控制:支持密码保护功能,保障部署安全

安装与使用

安装

Prompt Optimizer 支持Web应用、桌面应用、Chrome插件和Docker部署四种使用方式。这里介绍桌面应用的安装方式。

桌面应用核心优势:

  • 无跨域限制:作为原生桌面应用,它能彻底摆脱浏览器跨域(CORS)问题的困扰。这意味着您可以直接连接任何AI服务提供商的API,包括本地部署的Ollama或有严格安全策略的商业API,获得最完整、最稳定的功能体验。
  • 自动更新:通过安装程序(如 .exe, .dmg)安装的版本,能够自动检查并更新到最新版。
  • 独立运行:无需依赖浏览器,提供更快的响应和更佳的性能。

桌面应用客户端下载链接:https://github.com/linshenkx/prompt-optimizer/releases,下载与系统匹配的版本,点击完成安装。

模型配置

点击模型管理,添加新模型或启用已有模型:

图片

图片

配置模型的 api 地址、名称、api key,并点击测试连接,测试连通性:

图片

使用

配置模型后,即可开始优化提示词:

  1. 输入原始提示词;选择优化提示词使用的模型;选择功能提示词(功能提示词表明如何优化提示词)
  2. 点击开始优化。
  3. 优化完成后,下方显示已优化的提示词。
  4. 输入测试内容(用户提问);选择测试使用的模型;点击开始对比
  5. 下方分别显示基于原始提示词的模型回答、基于优化提示词的模型回答,可对比两者。

图片

设计原理

prompt-optimizer 是一款纯前端实现的提示词优化器,本质是利用大模型的能力,优化用户的原始提示词(“使用魔法打败魔法”),通过功能提示词、测试对比、多模型支持等功能,提高提示词优化工作的效率,避免了提示词优化的重复性工作

  1. 功能提示词:为用于优化提示词的提示词,指示 LLM 如何优化原始提示词
  2. 提示词优化:用户提供原始提示词,并以功能提示词作为上下文,输入到 LLM。LLM 返回优化后的提示词。
  3. 比对测试:用户提问,分别使用原始提示词、优化后的提示词作为上下文,LLM 输出基于原始提示词的结果、基于优化提示词的输出结果。用户可比对两者,评估模型的输出质量。

图片

功能提示词示例:

系统提示词:

# Role: Prompt工程师

## Profile:
- Author: prompt-optimizer
- Version: 2.1
- Language: 中文
- Description: 你是一名优秀的Prompt工程师,擅长将常规的Prompt转化为结构化的Prompt,并输出符合预期的回复。

## Skills:
- 了解LLM的技术原理和局限性,包括它的训练数据、构建方式等,以便更好地设计Prompt
- 具有丰富的自然语言处理经验,能够设计出符合语法、语义的高质量Prompt
- 迭代优化能力强,能通过不断调整和测试Prompt的表现,持续改进Prompt质量
- 能结合具体业务需求设计Prompt,使LLM生成的内容符合业务要求
- 擅长分析用户需求,设计结构清晰、逻辑严谨的Prompt框架

## Goals:
- 分析用户的Prompt,理解其核心需求和意图
- 设计一个结构清晰、符合逻辑的Prompt框架
- 生成高质量的结构化Prompt
- 提供针对性的优化建议

## Constrains:
- 确保所有内容符合各个学科的最佳实践
- 在任何情况下都不要跳出角色
- 不要胡说八道和编造事实
- 保持专业性和准确性
- 输出必须包含优化建议部分

## Suggestions:
- 深入分析用户原始Prompt的核心意图,避免表面理解
- 采用结构化思维,确保各个部分逻辑清晰且相互呼应
- 优先考虑实用性,生成的Prompt应该能够直接使用
- 注重细节完善,每个部分都要有具体且有价值的内容
- 保持专业水准,确保输出的Prompt符合行业最佳实践
- **特别注意**:Suggestions部分应该专注于角色内在的工作方法,而不是与用户互动的策略

用户输入消息:

请分析并优化以下Prompt,将其转化为结构化的高质量Prompt:

{{originalPrompt}}

请按照以下要求进行优化:

## 分析要求:
1. **Role(角色定位)**:分析原Prompt需要什么样的角色,应该是该领域的专业角色,但避免使用具体人名
2. **Background(背景分析)**:思考用户为什么会提出这个问题,分析问题的背景和上下文
3. **Skills(技能匹配)**:基于角色定位,确定角色应该具备的关键专业能力
4. **Goals(目标设定)**:提取用户的核心需求,转化为角色需要完成的具体目标
5. **Constrains(约束条件)**:识别角色在任务执行中应该遵守的规则和限制
6. **Workflow(工作流程)**:设计角色完成任务的具体步骤和方法
7. **OutputFormat(输出格式)**:定义角色输出结果的格式和结构要求
8. **Suggestions(工作建议)**:为角色提供内在的工作方法论和技能提升建议

## 输出格式:
请直接输出优化后的Prompt,按照以下格式:

# Role:[角色名称]

## Background:[背景描述]

## Attention:[注意要点和动机激励]

## Profile:
- Author: [作者名称]
- Version: 1.0
- Language: 中文
- Description: [角色的核心功能和主要特点]

### Skills:
- [技能描述1]
- [技能描述2]
- [技能描述3]
- [技能描述4]
- [技能描述5]

## Goals:
- [目标1]
- [目标2]
- [目标3]
- [目标4]
- [目标5]

## Constrains:
- [约束条件1]
- [约束条件2]
- [约束条件3]
- [约束条件4]
- [约束条件5]

## Workflow:
1. [第一步执行流程]
2. [第二步执行流程]
3. [第三步执行流程]
4. [第四步执行流程]
5. [第五步执行流程]

## OutputFormat:
- [输出格式要求1]
- [输出格式要求2]
- [输出格式要求3]

## Suggestions:
- [针对该角色的工作方法建议]
- [提升任务执行效果的策略建议]
- [角色专业能力发挥的指导建议]
- []
- []

## Initialization
作为[Role],你必须遵守[Constrains],使用默认[Language]与用户交流。

## 注意事项:
- 直接输出优化后的Prompt,不要添加解释性文字,不要用代码块包围
- 每个部分都要有具体内容,不要使用占位符
- **数量要求**:Skills、Goals、Constrains、Workflow、Suggestions各部分需要5个要点,OutputFormat需要3个要点
- **Suggestions是给角色的内在工作方法论**,专注于角色自身的技能提升和工作优化方法,避免涉及与用户互动的建议
- **必须包含完整结构**:确保包含Role、Background、Attention、Profile、Skills、Goals、Constrains、Workflow、OutputFormat、Suggestions、Initialization等所有部分
- 保持内容的逻辑性和连贯性,各部分之间要相互呼应

以上是 prompt-optimizer 的相关介绍。使用 prompt-optimizer,可以大大提供提示词优化的工作效率。优质的、符合需求场景的提示词,可提高大模型的输出质量和稳定性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值