最近在一个审计技术交流群里,有同仁提出了一个非常典型的问题:
请教下,我想把我们公司临时工外包考勤表和合同直接批量传到AI里面去,让AI帮我做个自动审计……哪个AI工具好用些?测试数据,不涉密”
这个问题之所以典型,是因为它简直问到了审计人的心坎里:谁不希望能把成堆的Excel、合同、凭证往AI里一扔,然后优雅地喝杯咖啡,坐等一份完美的审计报告“叮”地一声送到面前呢?
然而,有经验的同行很快指出,至少在现阶段直接这样做效果可能很难理想。
这种想法,就类似于“我有一袋种子,想找块地洒下去,秋季来个大丰收”。
种子(数据)是好的,地(AI)是肥沃的,但没有科学的耕作方法,得到的很可能不是大丰收,而是杂草丛生的失望。
简单地将DeepSeek等大模型看作一个黑盒式的数据处理器,往往会因为缺乏有效的交互和引导,导致结果宽泛、不可靠,难以直接应用于严谨的审计场景。
直接投喂数据为何不行?
对于数字化审计工作而言,直接将海量、复杂的结构化数据(如Excel表)交给DeepSeek等大模型进行分析,至少面临三个核心障碍:
- 上下文窗口限制与信息遗忘。 大模型在处理长文本或大量数据行时,存在“上下文窗口”的限制。当数据量超出这个窗口,模型可能会遗忘早前的信息和核心指令,导致分析的连贯性与准确性下降。当你的表格有几千上万行,它在分析到第8000行时,很可能已经忘了第1行讲的是什么,字段名称是什么,以及你最初的核心指令是什么。
- 语言模型在精确计算上的局限性。 大模型的长项在于理解、推理和生成语言,而非高精度的数学计算。在进行数据比对、加总、核算等需要100%精确的操作时,它可能会出现看似合理的计算错误,让它直接“看”着表格算工时、算薪酬、做比对,它很可能会“一本正经地胡说八道”,给出一个看似合理但实际上错误百出的结果,这在审计工作中是不可接受的。
- 无法替代审计人员的专业判断。 AI大模型,尤其是DeepSeek等通用大模型,不具备人类审计师基于经验积累的专业判断和职业怀疑精神。它无法自主识别数据背后潜藏的、微妙的舞弊信号,其分析往往停留在数据表面,缺乏审计的灵魂。
审计数据分析三步召唤法
难道大模型对审计数据分析就无计可施了吗?
当然不是!我们需要的,是换一种“召唤”它的方式。不要把DeepSeek等大模型当成一个埋头干活的审计人员,而要把它当成一个听你指挥、能秒懂你意图、并且能光速编写代码的顶尖技术助理。
大模型的超能力,用在需求挖掘和方案生成等高价值环节。数据分析的活儿,最终还是要让精确、可靠的代码去跑,远比依赖模型的直接“解读”要可靠得多。
基于此,我提炼出了一套高效、可靠的“三步召唤法”,从简单的问答请求,转变为结构化的任务指令,引导模型像审计专家一样思考,并将思考结果转化为精确、可执行的代码,从而能让审计人精准地驾驭大模型,完成复杂的数字化审计任务。
我们还用开头的“临时工考勤与合同审计”为例,看看这三步是如何操作的。
第一步:建立共识——让大模型准确理解数据背景
在开始分析前,首要任务是确保大模型与审计人员对业务数据有着完全一致的理解。这是后续所有工作的基石。
提示词Prompt示例:
你是【人力资源与薪酬审计】的专家和数字化舞弊审计专家,需要进行【临时工外包考勤与合同合规性】的审计。我有如下Excel数据。
## 【Excel表格字段列表】
- 考勤表:员工ID, 姓名, 日期, 上班打卡时间, 下班打卡时间, 当日工时...
- 合同表:员工ID, 姓名, 合同编号, 合同开始日期, 合同结束日期, 时薪...
## 【样本数据】
- 考勤表样本:1001, 张三, 2023-10-01, 09:05, 18:10, 8.08
- 合同表样本:1001, 张三, CT-2023-001, 2023-01-01, 2023-12-31, 100元/小时
第一步:请思考后告诉我,你对上述表格各字段的业务含义和潜在审计风险点的理解。请逐字段说明。我确认后,我们再进行下一步。
本步解析:
在正式分析前的一次“认知校准”。通过大模型的回应,我们可以快速判断其理解深度,并对其中的偏差进行纠正,确保双方在同一个知识平面上对话。
第二步:启发思路——利用大模型拓宽审计视角
在模型证明其已准确理解数据后,利用它的知识广度来激发和拓展我们自己的审计思路。
提示词Prompt示例:
很好,你的理解基本正确。
第二步:现在,请根据我们的审计任务背景和你对数据的理解,体现你作为舞弊审计专家的专业性,为我提出不少于10个数据分析的思路,并给出理由。用思路1、思路2 ... 无序列表方式输出。
注意:现在不要生成代码,先给我思路。思路要深入、开阔,不要泛泛而谈。
本步解析:
这是整个流程中最体现AI价值的一步!一个好的大模型会立刻化身审计专家,为审计人罗列出各种维度的分析点,提出一些我们可能忽略的、跨领域的风险点,例如工时记录的统计学异常(本福特定律应用)、合同过期后仍在考勤、实际工时远超合同约定、员工与供应商的关联关系等,极大地丰富审计的广度和深度。
第三步:生成代码——将分析思路转化为可执行方案
在审计人员对第二步生成的思路进行筛选、确认和优化后,最后一步就是让模型将这些抽象的思路转化为具体的、可执行的分析代码。
提示词Prompt示例:
你提出的分析思路很有价值。
任务第三步:请根据我们已确认的【思路1、思路3、思路5】,为我生成用于分析这些问题的Python代码。代码需要能够处理本地的Excel文件,并包含清晰的注释,解释每段代码的分析逻辑。
本步解析:
这一步是将专业思考落地的过程。审计人员无需从零开始编写复杂的脚本,而是将精力聚焦于验证代码逻辑和分析结果。这套代码不仅解决了当下的问题,更形成了一套可复用、可迭代的数字化审计资产。
结语
通过“理解数据 -> 挖掘思路 -> 生成代码”这三步,审计人员既利用了AI大模型广博的知识和逻辑能力,又保证了审计工作的严谨性和专业性。
通过这套工作流程,审计人员的角色发生了深刻的变化——从繁琐数据的直接处理者,转变为审计策略的设计者、分析过程的管理者和大模型能力的引导者。AI大模型也从黑盒式的“许愿池”,变为透明、高效的技术合伙人。
这个过程中,审计人并非将工作简单外包给AI大模型,而是在自己的专业框架内,将AI大模型作为一种强大的工具来调用。
这种人机协作模式,既发挥了AI大模型在知识广度和自动化方面的优势,又坚守了审计工作所必需的严谨性、精确性和专业判断。
这或许才是当前阶段,大模型在专业领域最务实、最有效的应用路径。
如何学习大模型 AI ?
我国在AI大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着Al技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国Al产业的创新步伐。加强人才培养,优化教育体系,国际合作并进,是破解困局、推动AI发展的关键。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
2025最新大模型学习路线
明确的学习路线至关重要。它能指引新人起点、规划学习顺序、明确核心知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
对于从来没有接触过AI大模型的同学,我帮大家准备了从零基础到精通学习成长路线图以及学习规划。可以说是最科学最系统的学习路线。
针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
大模型经典PDF书籍
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路!
配套大模型项目实战
所有视频教程所涉及的实战项目和项目源码等
博主介绍+AI项目案例集锦
MoPaaS专注于Al技术能力建设与应用场景开发,与智学优课联合孵化,培养适合未来发展需求的技术性人才和应用型领袖。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
为什么要学习大模型?
2025人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
适合人群
- 在校学生:包括专科、本科、硕士和博士研究生。学生应具备扎实的编程基础和一定的数学基础,有志于深入AGI大模型行业,希望开展相关的研究和开发工作。
- IT行业从业人员:包括在职或失业者,涵盖开发、测试、运维、产品经理等职务。拥有一定的IT从业经验,至少1年以上的编程工作经验,对大模型技术感兴趣或有业务需求,希望通过课程提升自身在IT领域的竞争力。
- IT管理及技术研究领域人员:包括技术经理、技术负责人、CTO、架构师、研究员等角色。这些人员需要跟随技术发展趋势,主导技术创新,推动大模型技术在企业业务中的应用与改造。
- 传统AI从业人员:包括算法工程师、机器视觉工程师、深度学习工程师等。这些AI技术人才原先从事机器视觉、自然语言处理、推荐系统等领域工作,现需要快速补充大模型技术能力,获得大模型训练微调的实操技能,以适应新的技术发展趋势。
课程精彩瞬间
大模型核心原理与Prompt:掌握大语言模型的核心知识,了解行业应用与趋势;熟练Python编程,提升提示工程技能,为Al应用开发打下坚实基础。
RAG应用开发工程:掌握RAG应用开发全流程,理解前沿技术,提升商业化分析与优化能力,通过实战项目加深理解与应用。
Agent应用架构进阶实践:掌握大模型Agent技术的核心原理与实践应用,能够独立完成Agent系统的设计与开发,提升多智能体协同与复杂任务处理的能力,为AI产品的创新与优化提供有力支持。
模型微调与私有化大模型:掌握大模型微调与私有化部署技能,提升模型优化与部署能力,为大模型项目落地打下坚实基础。
顶尖师资,深耕AI大模型前沿技术
实战专家亲授,让你少走弯路
一对一学习规划,职业生涯指导
- 真实商业项目实训
- 大厂绿色直通车
人才库优秀学员参与真实商业项目实训
以商业交付标准作为学习标准,具备真实大模型项目实践操作经验可写入简历,支持项目背调
大厂绿色直通车,冲击行业高薪岗位