很多人分不清楚什么是“提示词”(Prompt),什么是“提示词工程”(Prompt Engineering),现在还又多了一个概念叫“上下文工程”(Context Engineering),这又和“提示词工程”什么区别?
什么是提示词(Prompt)?
提示词很好理解,就是给 AI 模型的输入文本,就是你直接向模型输入的问题或指令。 比如你让 ChatGPT 总结一段文本、调用模型 API 传入提示词去翻译一篇文章等等。
提示词是一段文本,有点像代码。
什么是提示词工程(Prompt Engineering)?
提示词工程是一个过程,系统化地设计、测试、优化提示词的过程。
就像软件工程,我们为了完成某个需求,要有一套科学的方法来帮助完成软件开发的过程,有方法论(比如敏捷开发),要使用工具,要保证质量,不断迭代,最终交付软件,或者说代码。
举个例子
比如我们要有个提示词帮助翻译英文文章到中文。
普通人都可以写:
“请把下面的英文内容翻译为中文:”
这就是一段提示词。
但是你会发现虽然能翻译,但是似乎翻译效果不够好,于是你开始想办法优化,让 AI 扮演一个英文翻译到中文的专家,发现似乎有点效果。
但还是翻译有点生硬,然后你看有人介绍了 CoT(思维链,Chain of Though),于是尝试在提示词中让 AI 去先直译再意译,但你也不知道这样的改动是不是真的有用,于是你找了10篇文章,分别用加了 CoT 和没加 CoT 的文章,去用相同的模型去翻译,然后找了几个人,在不告诉他们使用什么方法翻译的情况下让他们评估好坏,结果绝大部分都认为加了 CoT 的效果更好,那么你就明白了,原来加了 CoT 对翻译是有效果的。
于是你受到鼓舞,即然 CoT 有效果,那么我在直译、意译的基础上,继续增加一个 AI 对直译结果的评估,再去意译,甚至再多加几步是不是效果更好?再继续改进提示词,拿着之前的测试集去评估测试,果然测试效果更好,但是也带来新的问题,Token 消耗更多,时间更长,还可能会偏离原意。CoT 也并不见得步骤越多越好。
再后来推理模型发布了,你发现模型自己会 CoT 了,语言能力也更强了,原来繁琐的一步步翻译似乎没有必要,于是进一步优化,发现只要在提示词中让模型“用中文重写”就可以达到很好的翻译效果,测试集评估结果也是正面的。
这整个对翻译提示词“设计”、“测试”、“优化”的过程就是提示工程。 最终通过这样的过程,产生出一个版本一个版本的提示词。
再精炼浓缩一下:提示词工程是产生提示词的过程。
什么是上下文工程(Context Engineering)?
要理解上下文工程,先得搞清楚什么是“上下文”(Context)?
“上下文”不仅仅是发给大语言模型的一句提示词,而是模型生成回答之前所看到的一切信息,这些信息包括系统提示词、用户输入的问题、当前对话的历史消息、系统对你的历史记忆、工具返回的信息等等。
另外上下文窗口不是无限的,每个模型都对上下文的长度有限制,通常上下文内容多了会影响性能,所以控制好发送给 AI 的上下文很重要,既不能遗漏,又不能什么都放进去要控制体积。
举个例子,你跟 ChatGPT 说:
“今天都有什么重要的 AI 新闻?”
看起来只是一句话,但是对于大模型来说,初始的上下文有这些:
- 系统提示词:“你是个有用的助手,总是帮用户解决问题”
- 用户输入:“今天都有什么重要的 AI 新闻?”
- 可用工具:“日期工具、搜索工具、网页抓取工具”
- 长期记忆:“用户主要使用中文”
- 历史会话消息:无
- 工具返回信息:无
这些上下文不足以让 AI 回答你的问题,于是它需要自己去调用工具找齐上下文:
- 根据日期工具获取到今天的日期(大模型自己不知道今天是几号)
- 根据今天的日期去调用搜索工具检索 AI 新闻
调用完工具后,现在 AI 的信息完整了:
-
系统提示词:“你是个有用的助手,总是帮用户解决问题”
-
用户输入:“今天都有什么重要的 AI 新闻?”
-
可用工具:“日期工具、搜索工具、网页抓取工具”
-
长期记忆:“用户主要使用中文”
-
历史会话消息:无
-
工具返回信息:
-
- 2025-7-1
- Hollywood Confronts AI Copyright Chaos in Washington, Courts
- Mark Zuckerberg Announces New Meta ‘Superintelligence Labs’ Unit
现在信息够了,考虑用户偏好中文,最后返回的内容如下:
今天的 AI 新闻有:
- 好莱坞在华盛顿和法院直面人工智能版权混乱
- 马克·扎克伯格宣布成立新的“超级智能实验室”部门 马克·扎克伯格宣布成立新的“超级智能实验室”部门
假如用户再追问一句:
“帮我返回第二条新闻的详情”
那么模型要从历史会话里面,找到第二条新闻的链接,再去调用网页抓取工具,把新闻内容抓取下来,根据用户的偏好翻译成中文,最后返回用户中文的新闻内容。
注意看这个构建上下文的过程是完全动态的,并不是按照设计好的工作流去收集上下文,而是模型自己根据当前上下文状态去自主动态的调用工具收集上下文,并且不同的任务需要调用的工具也不一样。
这其实也就是现在 AI Agent 的工作原理:能分辨是否已经收集够了完成任务必要的上下文,能自主决定是不是需要借助工具或者对话来补齐上下文。
上下文工程的概念也正是在 AI Agent 爆发的背景下诞生的。原来单纯靠提示词工程已经无法满足 AI Agent 产品的需求了,AI Agent 需要的更多的是为系统设计好工具、定义好工具和模型之间交互的数据格式、有效组织上下文信息提供给模型(内容长了要不要压缩、怎么压缩)等等。
上下文工程(Context Engineering),就是一门为 AI 设计和构建动态上下文的学科,为大语言模型提供恰当的信息和工具,帮助模型高效完成任务。
“上下文工程”指的是一种精妙而复杂的技术:你要精准地将上下文窗口填充上恰到好处的信息,让模型能准确地迈出下一步。
这是一门科学,也是门艺术。
说它是科学,因为你要把任务描述、说明、少量样例(few-shot examples)、检索增强生成(RAG)、各种相关数据(甚至可能是多模态数据)、工具、状态、历史信息等全部巧妙地组合在一起,同时还要考虑如何压缩信息。这就像烹饪一道精致的菜肴,配料太少或搭配不对,模型无法获得足够的信息,性能会变差;配料太多或毫无关联,则会增加成本甚至降低表现。要做好这件事,需要的不仅仅是简单堆叠,更是高度专业化的技巧。
说它是艺术,则是因为操作者还要掌握一种近似“心理学”的直觉,敏锐地洞察 LLM 和人类用户心理之间的微妙互动。
——Andrej Karpathy
最后
分别一句话总结一下
- 提示词: 发送给 AI 的问题或者指令文本
- 提示词工程: 系统化地设计、测试、优化提示词的过程。
- 上下文工程: 为大语言模型提供恰当的上下文、帮助模型高效完成任务的科学和艺术。
如果没理解这些概念也没关系,对于普通人来说,能写提示词就够了,要开发 AI 应用才需要考虑提示词工程去不断优化提示词,要开发动态的 AI 智能体才需要去搞上下文工程为 AI 的上下文窗口填充恰好的信息。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。