大模型入门指南 - Quantization:小白也能看懂的“模型量化”全解析

大模型(如DeepSeek、Qwen等)参数规模动辄数百亿,全精度(FP32)存储和推理会占用大量显存且速度慢。而模型量化技术通过将浮点数压缩为低精度整数,不仅能让大模型“瘦身”至1/4甚至更小体积,还能显著提升推理效率。例如,175B参数的模型用FP32需700GB显存,而量化到INT4仅需约10GB。

A Visual Guide to Quantization - by Maarten Grootendorst

一、概念解读

*Quantization(模型量化)到底是个啥?***模型量化是一种****参数压缩与加速技术****,其核心逻辑是将模型中的****高精度浮点数(如32位浮点数 FP32)****转换为****低精度整数(如8位整数 INT8 或4位整数 INT4)****,从而减少存储空间、提升推理速度并降低硬件能耗。****

  • FP32(浮点数):如同用科学计算器处理小数运算,精度高但计算慢、耗电多。
  • INT8(整数):如同用算盘处理整数运算,速度快、能耗低,但需通过“单位换算”保证结果接近。

Understanding Model Quantization in Large Language Models | DigitalOcean

*模型**量化**的本质**是通过****数学映射****,在****精度损失可控****的前提下,**将模型参数从“高精度”转换为“低精度”**,实现****性能与效率的平衡****。***

**1. 确定量化范围****

****找到参数或激活值的最小值(min)和最大值(max)。******

****例如:****权重参数范围:*****min=-1.2,* max=0.8;激活值范围:``min=0.1, max=5.6。

**2. 计算缩放因子(Scale)与零点(Zero Point)****

(1)缩放因子:scale = (max - min) / (2^n - 1)(``n为量化位数,如 INT8 n=82^8-1=255

*(2)零点:*zero_point = round(-min / scale)(确保浮点数 ``0 *映射到整数* 0*,避免负数溢出)***

*例如:若* min=-1.2, max=0.8INT8 量化:scale = (0.8 - (-1.2)) / 255≈0.00784,zero_point = round(-(-1.2) / 0.00784) ≈ 153

*3. 量化与反量化公式*

Zero-point quantization : How do we get those formulas? | by Luis Antonio  Vasquez | Medium

(1)量化:q = round(x / scale) + zero_point(将浮点数 x 映射为整数 q

(2)反量化:x' = (q - zero_point) * scale(将整数 q 还原为浮点数 x'*
*

A Visual Guide to Quantization - by Maarten Grootendorst

*为什么需要*Quantization(模型量化)*?****模型量化通过压缩内存占用和提升计算带宽效率,破解硬件资源受限与实时性需求矛盾。*****

  • ****存储维度:*****INT8压缩4倍,INT4压缩8倍*,实现“大象变蚂蚁”;**
  • 带宽维度:内存访问量减少75%,推理速度提升2-4倍,打通“高速专线”。

LLM Series - Quantization Overview | by Abonia Sojasingarayar | Medium

二、技术实现

*Quantization(模型量化)如何进行技术实现?**********模型量化主要通过训练后量化(Post-Training Quantization,PTQ)和量化感知训练(Quantization Aware Training,QAT)两种方式实现。***********

img

*1. PTQ(训练后量化)技术实现*

*PTQ在模型训练完成后,使用少量校准数据来估计权重和激活值的动态范围,进而确定量化参数(如缩放因子和零点),无需重新训练模型。**实现简单,无需重新训练模型,能够显著减少计算开销和内存占用,适用于大多数场景。*

**2. QAT(量化感知训练)技术实现****

**QAT在模型训练过程中就考虑量化效果,通过插入伪量化节点来模拟量化操作,模型在训练时即考虑到了量化误差,并通过反向传播算法调整模型的权重,从而使模型在量化后的推理阶段能够保持较高的精度。**由于在训练过程中考虑了量化误差,QAT通常能保证量化后的模型精度接近未量化模型,适用于对精度要求较高的应用场景。

Neural Network Model quantization on Mobile - AI blog - Arm Community blogs  - Arm Community

**PyTorch如何实现Quantization(模型量化)?**PyTorch作为主流的深度学习框架,提供了完整的量化工具链,支持训练后量化(PTQ)、量化感知训练(QAT)和动态量化等多种方式。**

**1. 动态量化(Dynamic PTQ)****

import torchfrom torch.quantization import quantize_dynamic# 加载预训练模型model = torch.load('model.pth')model.eval()# 动态量化(量化Linear和LSTM层)quantized_model = quantize_dynamic(    model,     {torch.nn.Linear, torch.nn.LSTM},  # 指定量化层类型    dtype=torch.qint8)

**2. 静态量化(Static PTQ)****

from torch.quantization import prepare, convert# 准备校准数据集def calibrate(model, data_loader):    model.eval()    with torch.no_grad():        for inputs in data_loader:            model(inputs)# 配置量化参数model.qconfig = torch.quantization.get_default_qconfig('fbgemm')model_prepared = prepare(model)          # 插入Observer节点calibrate(model_prepared, data_loader)  # 校准激活值范围quantized_model = convert(model_prepared)  # 转换为量化模型

**3. 量化感知训练(QAT)****

from torch.quantization import prepare_qat, FakeQuantize# 定义QAT模型model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')model_prepared = prepare_qat(model)     # 插入伪量化节点# 训练阶段(模拟量化误差)optimizer = torch.optim.SGD(model_prepared.parameters(), lr=0.01)for inputs, labels in train_loader:    outputs = model_prepared(inputs)    loss = criterion(outputs, labels)    loss.backward()    optimizer.step()# 转换至最终量化模型quantized_model = convert(model_prepared)

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值