终于把Transformer中的注意力机制搞懂了!!

今天给大家详细介绍一下 Transformer 中的自注意力机制。

Transformer 中的自注意力机制是该模型的核心组件之一,负责捕捉序列数据中的依赖关系,使得模型能够在处理长距离依赖问题时更加高效

自注意力机制(Self-Attention)

自注意力机制的基本思想是,根据输入序列中的每个元素,计算它与其他所有元素之间的相关性(称为“注意力权重”),并根据这些权重对输入序列进行加权求和,从而得到一个新的表示。

这个新表示包含了序列中所有元素的信息,但更侧重于与当前元素相关的重要部分。

自注意力机制的计算过程包括以下几个步骤。

  • 计算查询(Query)、键(Key)和值(Value)

    对于序列中的每个元素,先生成对应的查询向量 Q、键向量 K 和值向量 V。

    这些向量是通过线性变换从输入向量生成的。

    假设输入向量为

    其中,、 和 是可学习的权重矩阵。

  • 计算注意力分数

    对于每个查询向量 ,通过点积的方式计算它与所有键向量 的相似度,得到注意力分数。

    为了稳定训练过程,这些分数会除以 ,其中 是键向量的维度。

  • 计算注意力权重

    将注意力分数通过Softmax函数转换为注意力权重,使得它们和为1。

  • 计算注意力输出

    注意力输出是值向量的加权和。

从头开始实现自注意力

我们将使用 PyTorch 实现一个简单的自注意力机制。

在本示例中,我们将使用句子 “The quick brown fox jumps over a lazy dog” 并遵循自注意力过程的每个步骤。

1.数据准备

首先,我们将句子转换为整数列表,其中每个唯一的单词都分配一个唯一的索引。

sentence = 'The quick brown fox jumps over a lazy dog'  
dc = {s: i for i, s in enumerate(sorted(sentence.replace(',', '').split()))}  
print(dc)  
  
#{'The': 0, 'a': 1, 'brown': 2, 'dog': 3, 'fox': 4, 'jumps': 5, 'lazy': 6, 'over': 7, 'quick': 8}

现在,我们将句子映射到这些整数索引的张量。

r = [dc[i] for i in sentence.replace(',', '').split()]  
sentence_int = torch.tensor(r)  
print(sentence_int)  
  
#tensor([0, 8, 2, 4, 5, 7, 1, 6, 3])
2.嵌入句子

使用嵌入层将整数索引转换为向量。

import torch  
import torch.nn as nn  
  
vocab_size = 50000  # Assume a large vocabulary size  
torch.manual_seed(123)  
embed = nn.Embedding(vocab_size, 3)  
embedded_sentence = embed(sentence_int).detach()  
print(embedded_sentence)

该句子现在表示为一个 9x3 矩阵,每个单词被转换为一个三维的向量。

3.自注意力机制

首先创建查询、键和值矩阵。

torch.manual_seed(123)  
d = embedded_sentence.shape[1]  # Dimension of embeddings  
d_q, d_k, d_v = 2, 2, 4  # Dimensions for query, key, and value matrices  
  
W_query = torch.nn.Parameter(torch.rand(d, d_q))  
W_key = torch.nn.Parameter(torch.rand(d, d_k))  
W_value = torch.nn.Parameter(torch.rand(d, d_v))  
query = embedded_sentence @ W_query  
key = embedded_sentence @ W_key  
value = embedded_sentence @ W_value
4.计算注意力分数

注意力分数通过查询和键矩阵的点积计算,然后进行缩放。

import math  
import torch.nn.functional as F  
  
attention_scores = query @ key.T  
attention_scores = attention_scores / math.sqrt(d_k)  
attention_weights = F.softmax(attention_scores, dim=-1)
5.生成上下文向量

最后,我们使用注意权重来计算上下文向量。



context\_vector = attention\_weights @ value  
print(context\_vector)  



在这里插入图片描述

6.封装在模块中

下面,我们来总结一下,将上述代码封装在 python 模块中。

class SelfAttention(nn.Module):  
    def __init__(self, d, d_q, d_k, d_v):  
        super(SelfAttention, self).__init__()  
        self.d = d  
        self.d_q = d_q  
        self.d_k = d_k  
        self.d_v = d_v  
        self.W_query = nn.Parameter(torch.rand(d, d_q))  
        self.W_key = nn.Parameter(torch.rand(d, d_k))  
        self.W_value = nn.Parameter(torch.rand(d, d_v))  
    def forward(self, x):  
        Q = x @ self.W_query  
        K = x @ self.W_key  
        V = x @ self.W_value  
        attention_scores = Q @ K.T / math.sqrt(self.d_k)  
        attention_weights = F.softmax(attention_scores, dim=-1)  
        context_vector = attention_weights @ V  
        return context_vector
7.使用自注意力模块

我们实例化 SelfAttention 模块并通过它传递嵌入的句子。



sa = SelfAttention(d=3, d\_q=2, d\_k=2, d\_v=4)  
cv = sa(embedded\_sentence)  
print(cv.shape)  
print(cv)


如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Transformer算法学习心得 Transformer是一种革命性的神经网络架构,最初由Vaswani等人于2017年提出[^3]。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用自注意力机制(Self-Attention Mechanism)。以下是关于Transformer算法的一些核心理解和体会: #### 1. **结构设计的独特性** Transformer的核心在于其完全依赖于注意力机制来捕捉输入序列中的全局关系。相比传统模型,Transformer取消了时间步的概念,使得并行化处理成为可能。这一特性显著提升了训练效率[^3]。 #### 2. **自注意力机制的重要性** 自注意力机制允许模型在同一时刻关注输入的不同部分,从而捕获更丰富的上下文信息。具体来说,通过计算查询向量(Query)、键向量(Key)和值向量(Value)之间的相似度得分,可以动态调整不同位置的权重分布[^3]。这种方法有效地解决了长距离依赖问题,这是RNN难以克服的一个瓶颈。 #### 3. **多头注意力机制的作用** 为了增强表达能力,Transformer引入了多头注意力机制(Multi-head Attention)。该机制通过多个独立的注意力子层分别提取不同的特征维度,并最终将它们拼接在一起形成完整的表示[^3]。这种方式不仅增加了模型容量,还能够更好地适应复杂的语义模式。 #### 4. **前馈神经网络的应用** 除了注意力模块外,每个编码器/解码器单元还包括两个全连接层组成的前馈神经网络(Feed Forward Network, FNN)。这些密集连接有助于进一步变换数据表征形式,提升整体性能表现[^3]。 #### 5. **位置编码的意义** 由于缺乏固有的顺序信息支持,必须显式加入绝对或相对位置编码以帮助模型理解词序排列规律。通常做法是在嵌入矩阵基础上叠加正弦波函数生成的位置信号作为额外输入提供给后续处理步骤使用。 #### 6. **损失函数的选择** 值得注意的是,尽管Transformer应用于自然语言生成任务时采用了逐词预测策略,但它依然沿用了经典的交叉熵损失函数来进行优化目标设定。这表明即使是最先进的技术框架也可能建立在简单有效的理论基础之上。 #### 7. **实际应用中的挑战与发展方向** 尽管取得了巨大成功,但在某些特定场景下仍然面临诸多难题亟待解决。例如当面对超高分辨率图像或者超大规模文本片段时可能会遭遇内存占用过高以及运算速度下降等问题[^1]。为此研究人员提出了多种改进方案如限制注意力建模区域大小、减少输入长度等方式缓解资源消耗压力;同时探索如何有效融合其他经典视觉感知工具比如卷积核操作等手段弥补单一方法局限性也成为热门话题之一[^1]。 此外,在隐私保护日益受到重视的大背景下,“联邦版”的Transformers也开始进入公众视野——即借助分布式协作训练范式让多方共同参与构建共享知识库而不泄露各自敏感资料内容[^2]。这类新兴领域无疑为未来AI发展开辟了全新思路空间值得深入探讨研究下去。 ```python import torch.nn as nn class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=5000): super(PositionalEncoding, self).__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): return x + self.pe[:, :x.size(1)] ``` 以上代码展示了用于实现位置编码的一种常见方式。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值