推荐6个,用 AI搞副业的赚钱机会(附保姆级教程)

1.AI表情包

试试用AI做表情包吧,小白也能上手!

你不需要会画画,也不用懂设计,只要会用电脑就行。AI帮你搞定创意,你只管添加文字和图片,几分钟就能做出一套表情包。

现在大家都爱用表情包聊天,市场需求大得很。你做好了,可以放到网上卖,或者跟品牌合作,赚点小钱。

一看就懂,一学就会。说不定你就是个隐藏的表情包大师呢!

相关制作AI表情包制作教程+工具资料在下方
这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

2.AI拆书

AI拆书,听起来是不是有点高大上?

其实它就是用人工智能帮你快速读懂一本书的精华。就像有个学霸朋友,帮你把厚厚的书页翻成薄薄的要点。

你只需要输入书名或者上传书籍,AI就能分析内容,提炼出关键信息,比如主题、观点、重要人物和事件。你能在短时间内抓住书的精髓。

最关键的是,在做这个事情的时候分享到社交媒体上还能挣钱!

例子:小红书上的一个关于「明朝那些事儿」的视频。这些视频通过AI生成的精美图片和生动的讲述方式,把明朝的历史事件展现得栩栩如生。

3.AI视频连载

AI小说的延伸版本,用AI视频的方式来做小说视频连载。

听起来就像是有个机器人导演,帮你把故事一段段拍成视频。

你有个想法,想把它变成视频,但自己又不会剪辑,也不会特效。你只需要提供脚本或者故事大纲,AI就能帮你搞定剩下的活儿。

4.AI童年治愈视频

就在刚刚,我发现了一种AI视频,它的制作门槛非常低,仅需利用AI生成的童年回忆视频,便能轻松实现可观的收益。没错,就是这个在小某书上的账号,7000粉丝,获赞5.6万。

5.AI数字人

就是那种用电脑技术搞出来的虚拟人物,长得像真人。都有现成的技术可以制作,全流程都可以使用AI工具直接生成,制作门槛非常低。

适合人群: 主业忙但还是想尝试副业的人

6.AI教育

利用制作AI英语早教视频实现盈利的方法。

通过一系列精心设计的步骤,包括文案的搜集与整理、图片的生成、专业的配音服务、画面布局的精细排版以及最终视频的生成,我们能够制作出高质量的早教视频内容。

提供了有效的变现策略,以及如何将潜在用户引流至私域并实现进一步的价值转化。

为了打造具备竞争力的内容,我们必须注重视频风格的亲和力与吸引力,确保其内容能够精准满足宝妈用户群体的实际需求。

保持内容的高频更新,将有助于我们不断吸引和留住用户的关注,从而进一步提升视频的曝光度和转化率。

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,用户问的是关于“SD模型炼丹”,也就是Stable Diffusion模型的训练和微调。首先,我需要确认用户对SD模型的基础了解程度。可能用户已经知道Stable Diffusion是什么,但想进一步学习如何训练自己的模型。 接下来,我应该解释清楚什么是“炼丹”,也就是模型训练的过程。需要分步骤说明,从准备数据到训练技巧,再到应用场景。用户可能对技术细节感兴趣,但作为副业,他们可能更关注实际应用和变现方式。 要考虑到用户可能的背景,或许他们有一定的技术基础,但需要指导如何入门。需要推荐一些工具和平台,比如Hugging Face、Colab,还有常用的库如Diffusers。同时,要提醒注意事项,比如版权问题,硬件需求,避免常见错误。 用户可能想知道如何将训练好的模型变现,所以要列出几个可行的途径,比如模型售卖、定制服务、内容创作等。这部分需要具体案例,比如在Civitai上出售模型,或者接企业定制项目。 还要注意回答的结构,按照之前的格式,分点说明,保持清晰。同时,确保使用正确的中文术语,避免翻译错误。比如“微调”而不是“fine-tuning”的直译。 另外,用户可能在寻找副业方向,所以需要强调低成本和可操作性,比如使用现有平台和开源工具,减少初期投入。提醒他们时间和资源管理的重要性,比如数据标注的耗时和硬件要求。 最后,检查是否有遗漏的关键点,比如训练技巧中的学习率调整、数据增强,或者应用场景中的具体例子。确保回答全面且实用,帮助用户真正开始他们的SD模型训练副业。</think>以下是关于**Stable Diffusion(SD)模型训练与微调(俗称“炼丹”)**的详细介绍,涵盖技术原理、操作流程和变现方向: --- ### 一、SD模型基础概念 #### 1. **什么是“炼丹”** - **定义**:通过调整模型参数或输入数据,让SD模型生成特定风格的图像(如动漫风、写实摄影、品牌视觉等)。 - **常见类型**: - **Checkpoint模型**:完整训练新模型(需高算力) - **LoRA模型**:轻量微调(适合个人开发者) - **Textual Inversion**:通过关键词触发特定风格 #### 2. **技术原理** - **核心机制**:通过反向扩散过程(Diffusion)逐步去除噪声生成图像 - **训练关键**: - **数据集**:图像+标签(需规范标注) - **Loss函数**:计算生成图与目标图的差异 - **学习率**:控制参数更新速度(过高会失真,过低效率低) --- ### 二、炼丹全流程指南(以LoRA为例) #### 1. **准备阶段** - **硬件需求**: - 最低配置:RTX 3060(12GB显存) - 推荐配置:RTX 4090/A100(可租赁Google Colab或AutoDL) - **软件工具**: - WebUI:AUTOMATIC1111/Kohya_SS - 库:Diffusers、Hugging Face Transformers #### 2. **数据准备** - **数据集要求**: - 风格统一:建议20-50张同类型图片 - 分辨率:512×512或768×768(需统一) - 标注格式:`.txt`文件描述每张图(可用WD14标签器自动生成) - **预处理工具**: - 去重:`ImageDedup` - 增强:`Albumentations`(旋转/裁剪/调色) #### 3. **训练参数设置** ```python # 典型LoRA配置(kohya_ss GUI) { "learning_rate": 1e-4, "batch_size": 4, "max_train_steps": 1000, "network_dim": 128, "optimizer": "AdamW8bit", "mixed_precision": "fp16" } ``` #### 4. **训练技巧 - **防止过拟合**: - 正则化:Dropout率设为0.1-0.3 - 早停法(Early Stopping) - **提升效果**: - 渐进式学习率(Cosine衰减) - 分层训练(先练整体结构,再调细节) --- ### 三、变现方向 #### 1. **模型售卖** - **平台**: - Civitai(国际社区,高流量) - 吐司(国内平台,支持RMB结算) - **定价策略**: - 通用模型:$5-15/次下载 - 定制模型:$200+/项目 #### 2. **企业服务** - **案例**: - 电商:生成产品宣传图(需配合ControlNet控制姿势) - 游戏:快速产出角色/场景概念图 - 广告:批量生成A/B测试素材 #### 3. **内容创作** - **NFT生成**:用SD制作系列化数字藏品 - **自媒体素材**:生成配图+AI配音(如抖音科普视频) --- ### 四、常见问题与避坑指南 1. **显存不足报错**: - 解决方案:启用`--medvram`参数,或减小`batch_size` 2. **人物脸部崩坏**: - 修复方法:训练时添加`<lora:detail_face:0.8>`触发词 3. **版权风险**: - 合规建议:使用CC0协议图片训练,或购买Shutterstock数据集 --- ### 五、学习资源推荐 1. **入门教程**: - Hugging Face官方文档《Fine-tuning Stable Diffusion》 - B站:秋葉aaaki的《SD-WebUI保姆教程》 2. **进阶工具**: - 超参优化:Weights & Biases(可视化训练过程) - 模型融合:Merge Block Weight脚本 --- **启动建议**: 可从微调现成模型(如`Counterfeit-V3`)开始,尝试输出小红风格插画(需关键词`pastel color, flat illustration`),测试市场需求后再投入深度开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值