C++二叉树三种遍历方法全图解:前序遍历的前是什么前!
在数据结构中,二叉树是一种非常重要的非线性数据结构。它由节点组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。二叉树的遍历是指按照某种顺序访问树中的所有节点。常见的遍历方法有三种:前序遍历、中序遍历和后序遍历。本文将通过一个具体的例子,详细介绍这三种遍历方法的概念、遍历过程以及如何在C++中实现它们。
二编:反过来,如何通过前序遍历和中序遍历,中序遍历和后序遍历得出二叉树结构呢,关注博文:每日一题:通过前序与中序遍历、中序与后序遍历构造二叉树,题目见文章末尾。
二叉树基本概念
在介绍遍历方法之前,我们先来了解一下二叉树的基本概念。
- 节点(Node):二叉树的基本单位,每个节点包含数据域和两个指针域,分别指向左子节点和右子节点。
- 根节点(Root):二叉树的顶层节点,没有父节点。
- 叶子节点(Leaf):没有子节点的节点。
- 深度(Depth):从根节点到当前节点的路径长度。
- 高度(Height):从当前节点到叶子节点的最长路径长度。
三种遍历方法
1. 前序遍历(Preorder Traversal)
前序遍历的顺序是:根节点 -> 左子树 -> 右子树。也就是说,先访问根节点,然后递归地前序遍历左子树,最后递归地前序遍历右子树。
遍历过程:
-
访问根节点A。直接导出根节点A、节点B、和没有节点的叶子节点D;
-
前序遍历左子树(B、D、E、G)。节点B左节点搜索完毕,搜索右节点,直接导出节点E(前序遍历的前就是节点先导出),然后有限导出节点E的左节点,然后右节点(本例子无右节点)。
3. 前序遍历右子树(C、F)。至此左子树搜索完毕,搜索右子树。直接导出右节点C,同时分别搜索节点C的左右节点。
无左节点,右节点为叶子节点。至此前序遍历结束。
遍历结果:A -> B -> D -> E -> G -> C -> F
2. 中序遍历(Inorder Traversal)
中序遍历的顺序是:左子树 -> 根节点 -> 右子树。也就是说,先递归地中序遍历左子树,然后访问根节点
,最后递归地中序遍历右子树。
遍历过程:
-
中序遍历左子树(D、B、G、E)。与前序遍历不同,中序遍历不先导出根节点。一直搜索左节点直至第一个叶子节点。
然后访问该叶子节点的父节点,并导出。最后访问该父节点的右节点,但不直接导出。以此访问该节点的左右节点。
-
访问根节点A。
-
中序遍历右子树(C、F)。
遍历结果:D -> B -> G -> E -> A -> C -> F
3. 后序遍历(Postorder Traversal)
后序遍历的顺序是:左子树 -> 右子树 -> 根节点。也就是说,先递归地后序遍历左子树,然后递归地后序遍历右子树,最后访问根节点。
遍历过程:
1.根节点在最后访问!!! 后序遍历左子树(D、G、E、B)。
然后访问该叶子节点的父节点的右节点(不绕不绕),但不直接导出。
-
后序遍历右子树(F、C)。
-
访问根节点A。
遍历结果:D -> G -> E -> B -> F -> C -> A
C++代码实现
下面我们通过C++代码来实现这三种遍历方法。首先,我们需要定义一个二叉树节点的结构体,然后实现前序、中序和后序遍历的函数。
#include <iostream>
using namespace std;
// 定义二叉树节点结构体
struct TreeNode {
char data;
TreeNode* left;
TreeNode* right;
TreeNode(char val) : data(val), left(nullptr), right(nullptr) {
}
};
// 前序遍历
void preorderTraversal(TreeNode* root) {
if (root == nullptr) return;
cout << root->data << " "; // 访问根节点
preorderTraversal(root->left); // 递归遍历左子树
preorderTraversal(root->right); // 递归遍历右子树
}
// 中序遍历
void inorderTraversal(TreeNode* root) {
if (root == nullptr) return;
inorderTraversal(root->left); // 递归遍历左子树
cout << root->data << " "; // 访问根节点
inorderTraversal(root->right); // 递归遍历右子树
}
// 后序遍历
void postorderTraversal(TreeNode* root) {
if (root == nullptr) return;
postorderTraversal(root->left); // 递归遍历左子树
postorderTraversal(root->right); // 递归遍历右子树
cout << root->data << " "; // 访问根节点
}
int main() {
// 构建二叉树
TreeNode* root = new TreeNode('A');
root->left = new TreeNode('B'