kb14数论A ——欧拉函数

该博客主要探讨了一个涉及欧拉函数的问题:给定一些数字,找出欧拉函数值大于等于当前数字的最小和。文章通过编写C++代码实现了一个求解欧拉函数的函数,并解决了一系列测试用例。在解决问题的过程中,博主强调了欧拉函数计算的细节和注意事项,如设置较大的数组边界以避免溢出。

A 欧拉函数

题意:

给出n个数,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和。 

思路:

Euler函数板子,注意N要设的大一点,不能只设成1e6,会RE

// Decline is inevitable,
// Romance will last forever.
//#include <bits/stdc++.h>
#include <iostream>
#include <cmath>
#include <cstring>
#include <string>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <deque>
#include <vector>
using namespace std;
#define mst(a, x) memset(a, x, sizeof(a))
#define INF 0x3f3f3f3f
#define mp make_pair
#define pii pair<int,int>
#define fi first
#define se second
#define ll long long
#define int long long
const int maxn = 1e6 + 10;
const int maxm = 1e3 + 10;
const int P = 1e9 + 7;
int phi[maxn];
void Getphi(int n) {    //求1-n每个数的欧拉函数
    for(int i = 1; i <= n; i++)
        phi[i] = i;
    for(int i = 2; i <= n; i++) {
        if(phi[i] == i)
            phi[i] = i - 1;  //i是质数
        for(int j = 2; j * i <= n; j++)
            phi[i * j] = phi[j * i] / i * (i - 1);
    }
}
void solve() {
    int N = (int)1e6 + 8;
    Getphi(N);
    int t;
    cin >> t;
    for(int i = 1; i <= t; i++) {
        int n;
        cin >> n;
        ll ans = 0;
        for(int j = 1; j <= n; j++) {
            int x;
            cin >> x;
            for(int k = x + 1;; k++)
                if(phi[k] >= x) {
                    ans += k;
                    break;
                }
        }
        cout << "Case " << i << ": " << ans << " Xukha" << endl;
    }
}
signed main() {
    ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
//    int T; scanf("%d", &T); while(T--)
//    freopen("1.txt","r",stdin);
//    freopen("output.txt","w",stdout);
//    int T; cin >> T;while(T--)
    solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值