ENVI监督分类

本文介绍了如何在ENVI软件中进行监督分类,包括最小距离和最大似然方法,以及如何处理分类结果、评估精度。通过实例演示了选择Support Vector Machine分类和地物分离性分析的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实验名称:

监督分类

二、实验目的:

(1)了解监督分类的原理与意义;

(2)了解不同监督分类方法的原理;

(3)掌握使用ENVI软件对影像进行监督分类的操作方法。

三、实验内容和要求:

在ENVI软件中对TM影像进行监督分类,监督分类方法有最小距离分类、最大似然分类等。

随后对分类结果进行处理,包括类别集群和类别合并。最后对分类结果精度进行评价。

四、实验步骤:

1.打开数据文件。

 2.按波段5、4、3显示。

3.点击工具栏上的ROI Tool,会出现构建感兴趣区域的对话框。点击新建ROI,然后将ROI命名为“耕地”,颜色设置为黄色,Geometry中选择多边形。即可在影像上构建一些耕地的ROI。

4.Options>Compute ROI separability打开Choose ROIs Select All items点击OK。

5.在ROI Tool中选择Options——Compute ROI Separability,选择影像后,将所有地物选中,随后会自动计算出各个地物类别之间的可分离性,如下图所示。可以看到所有地物之间分离性值均大于1.9,说明类别间可分离性较好,可以进行监督分类。

6.Classification>Supervised Classification>Support Vector Machine Classfication。

7.在参数设置对话框中选择所有的地物类别,设置最大标准差阈值Set Max stdev from Mean为Single Value,值为10,设置最大距离误差Set Max Distance Error中设置为None。最后设置输出文件路径及文件名。

8.显示分类结果。

五、实验体会:

    1.问题一:选择精度较高的分类方法。

解决方案:Classification>Supervised Classification>Support Vector Machine Classfication。

2.问题二:地物之间分离性值均大于1.9,说明类别间可分离性较好,可以进行监督分类。

3.实习体会:了解监督分类的原理与意义,了解不同监督分类方法的原理,掌握使用ENVI软件对影像进行监督分类的操作方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Super毛毛穗

今天晚饭加什么?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值