【泛学内容】拉格朗日乘子法求解带约束的优化问题

拉格朗日乘子法

用于求解约束条件下的极值问题,是SVM的理论基础。

一、简单例子引入

求解以下优化问题:
m i n   f ( x 1 , x 2 ) = x 1 2 + x 2 2   s t .   x 1 + x 2 = 2 \begin{aligned} &min \ f(x_1,x_2)=x_1^2+x_2^2 \\\ &st.\ x_1+x_2 = 2 \end{aligned}  min f(x1,x2)=x12+x22st. x1+x2=2
使用函数 g ( x 1 , x 2 ) = x 1 + x 2 − 2 g(x_1,x_2)=x_1+x_2-2 g(x1,x2)=x1+x22来描述约束条件,则 g ( x 1 , x 2 ) = 0 g(x_1,x_2)=0 g(x1,x2)=0

引入拉格朗日乘子 λ \lambda λ,构造一个新函数 h ( x 1 , x 2 ) = f ( x 1 , x 2 ) + λ g ( x 1 , x 2 ) h(x_1,x_2)=f(x_1,x_2)+\lambda g(x_1,x_2) h(x1,x2)=f(x1,x2)+λg(x1,x2)。很显然 h ( x 1 , x 2 ) = f ( x 1 , x 2 ) h(x_1,x_2)=f(x_1,x_2) h(x1,x2)=f(x1,x2),因此要求 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2)的最小值,即求 h ( x 1 , x 2 ) h(x_1,x_2) h(x1,x2)的最小值,则令梯度为0,表达式如下:
∂ h ( x 1 , x 2 ) ∂ x 1 = ∂ f ( x 1 , x 2 ) ∂ x 1 + λ ∂ g ( x 1 , x 2 ) ∂ x 1 = 2 x 1 + λ = 0   ∂ h ( x 1 , x 2 ) ∂ x 2 = ∂ f ( x 1 , x 2 ) ∂ x 2 + λ ∂ g ( x 1 , x 2 ) ∂ x 2 = 2 x 2 + λ = 0   (1) \frac{\partial h(x_1,x_2)}{\partial x_1}=\frac{\partial f(x_1,x_2)}{\partial x_1}+\lambda \frac{\partial g(x_1,x_2)}{\partial x_1}=2x_1+\lambda=0 \\\ \frac{\partial h(x_1,x_2)}{\partial x_2}=\frac{\partial f(x_1,x_2)}{\partial x_2}+\lambda \frac{\partial g(x_1,x_2)}{\partial x_2}=2x_2+\lambda=0 \\\ \tag{1} x1h(x1,x2)=x1f(x1,x2)+λx1g(x1,x2)=2x1+λ=0 x2h(x1,x2)=x2f(x1,x2)+λx2g(x1,x2)=2x2+λ=0 (1)
则有以下等式组:
2 x 1 + λ = 0   2 x 2 + λ = 0   x 1 + x 2 − 2 = 0 (2) 2x_1+\lambda =0 \\\ 2x_2+\lambda =0 \\\ x_1+x_2-2=0 \tag{2} 2x1+λ=0 2x2+λ=0 x1+x22=0(2)
求解得到结果为 λ = − 2 , x 1 = x 2 = 1 \lambda=-2,x_1=x_2=1 λ=2x1=x2=1,则表示 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2) x 1 = x 2 = 1 x_1=x_2=1 x1=x2=1时取得最小值,值为2。

二、几何简介

对于约束函数 g ( x 1 , x 2 ) = 0 g(x_1,x_2)=0 g(x1,x2)=0,即可以看作一条直线,最终 x 1 , x 2 x_1,x_2 x1,x2的取值要满足在这条直线上。对于 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值