[行人重识别论文]Meta Pairwise Relationship Distillation for Unsupervised Person Re-identification

摘要:由于缺乏基本事实标签,无人监督人员重新识别 (Re-ID) 仍然具有挑战性。现有方法通常依赖于通过迭代聚类和分类来估计的伪标签,不幸的是,它们极易受到不准确的聚类估计数造成的性能损失。或者,我们提出了元成对关系蒸馏 (MPRD) 方法来估计无监督人员 Re-ID 的样本对的伪标签。具体来说,它由卷积神经网络(CNN)和图卷积网络(GCN)组成,其中GCN根据CNN提取的当前特征估计样本对的伪标签,CNN通过涉及GCN强加的高保真正负样本对来学习更好的特征。为了达到这个目的,使用少量标记样本来指导GCN训练,GCN可以提炼元知识来判断正负样本对之间邻域结构的差异。在 Market-1501、DukeMTMC-reID 和 MSMT17 数据集上的大量实验表明,我们的方法优于最先进的方法。

Figure1: 两种伪标签估计方法的图示,其中(a)传统方法直接采用成对相似度来估计伪标签,而(b)我们的方法采用成对邻域结构来估计伪标签。每个圆圈表示一个单独的图像。绿色圆圈表示与查询图像相同的身份,深色表示视觉相似度高,红色圆圈表示其他身份。

具体方法: CNN 和 GCN 以交替的方式进行训练,以迭代方式分别优化其每图像特征和成对伪标签。在每次迭代中,CNN 都会提取当前每个图像的特征,并通过它与先前特征的线性组合来更新特征内存。然后,根据视觉相似度量,通过将每个图像与其相邻图像连接起来来估计成对邻域结构。然后将生成的图形结构输入到 GCN 中,以推断样本对的伪标签。从经验上看,我们发现在没有任何监督的情况下训练GCN是非常困难的,因此,我们利用少量标记的原数据来显式监督GCN,这极大地帮助了它的鲁棒性。

Figure2: MPRD概述。初始化的骨干网提取训练镜像的特征。然后,GCN推断特征与其相邻特征之间的成对关系,用于训练CNN模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值