洛谷: P9749 [CSP-J 2023] 公路

文章讲述了如何使用贪心思想和动态规划方法来解决一个问题,即在给定加油站油价和车辆行驶距离的情况下,找到最低成本的加油策略。通过计算每个站点的最低油价并结合实际行驶需求,给出一个C++代码实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路:

贪心思想指的是在对问题求解的时候,总是能做出在当前看来是最好的选择,也就是说,如果要得到整个问题的最优答案,那么要求每一步都能做出最好的选择(feihua)。

在这道题里面,我们希望在来到第i站的时候,使用的是前面i-1站当中油价最低的油。

dp[i] 表示前i站的最低油价(在站点2的时候莫得选,只能用站点1加的油)。然后遍历每个站点,计算来到每个站加多少油,花费多少钱。

#include <bits/stdc++.h>
using namespace std;
#define maxn 100003
#define ll long long
int n, d;//d每升油可以前进的距离
ll v[maxn], a[maxn],dp[maxn];
int main() {
	cin >> n >> d;
	for (int i = 1; i <= (n-1); i++) cin >> v[i];
	for (int i = 1; i <= n; i++) cin >> a[i];
	dp[1] = a[1];
	for (int i = 2; i <= n; i++) dp[i] = min(dp[i - 1], a[i]);//经过的价格最便宜的加油站
	ll s = 0,spend = 0;//需要行驶的距离 花费的钱
	for (int i = 1; i <= (n-1); i++) {
		s += v[i];
		if (s > 0) {
		   spend += ceil(s * 1.0 / d) * dp[i];//需要花多少钱
		}
		s -= ceil(s*1.0 / d) * d;//将买的油用完,能够行驶的距离
	}
	cout << spend << endl;
	return 0;
}

### CSP-J 2023 公路试题解析 #### 题目概述 CSP-J 2023 的复赛中,“公路”是一道经典的优化类问题,主要涉及油料消耗和价格优化。该题目要求选手在有限资源下寻找最优路径规划方案,考验了参赛者的算法设计能力和逻辑思维水平[^1]。 #### 贪心算法的应用 为了高效解决问题,可以采用贪心算法作为核心思路。具体而言,在每一步决策时都选择当前局部最优解,最终达到全局最优的效果。例如,在加油站点的选择上,优先考虑油价较低的位置补充燃料,以此降低整体成本并满足行驶需求。 #### 特殊性质利用 当面对难以直接求解的情形时,可尝试借助题目给出的数据范围或其他隐含条件进行简化操作。比如枚举 [-2000, 2000] 区间内的所有可能值来验证是否存在符合条件的结果,并从中选取最大值作为答案之一;这种方法虽然效率不高但能获得部分分数支持[^3]。 #### 二分法实现 另一种有效的方法是通过二分查找技术缩小目标区间直至逼近真实解。在此基础上调整参数设置使得计算过程更加精确可控。特别注意的是由于实际场景下的时间变量通常为整数或者固定间隔变化因此应该对相应数值做适当转换后再执行迭代运算直到满足精度要求为止最后再还原回原始单位表示形式即可得出最终结论[^4]。 以下是基于上述原理编写的 Python 实现代码: ```python def solve_road_problem(stations, fuel_capacity): n = len(stations) dp = [float('inf')] * (n + 1) dp[0] = 0 for i in range(1, n + 1): distance = stations[i - 1][0] price = stations[i - 1][1] # 寻找最近的加油站 j ,其中 j 到 i 的距离不超过 fuel_capacity max_j = -1 min_price = float('inf') for j in range(i - 1, -1, -1): if distance - stations[j][0] <= fuel_capacity and stations[j][1] < min_price: min_price = stations[j][1] max_j = j if max_j != -1: dp[i] = min(dp[i], dp[max_j] + (distance - stations[max_j][0]) * min_price) return dp[n] # 测试数据 stations = [(0, 5), (100, 4), (200, 3)] fuel_capacity = 150 result = solve_road_problem(stations, fuel_capacity) print(result) ``` 此段代码定义了一个函数 `solve_road_problem` 接受两个参数分别是沿途各处加满一次汽油所能跑的最大公里数列表以及车辆单次充满油箱后最多可行进的距离限制然后返回完成整个旅程所需的最低总费用金额。 #### 输出格式说明 根据题目描述如果存在合法解答则需打印较大的那个实根反之输出字符串 "NO"[^5]. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值