应用数理统计所需:概率论知识扫盲

一、概率基本概念

1.1.条件概率:

事件B在事件A已经发生下的发生概率

1.2联合概率:

表示两件事共同发生的概率,A与B的联合概率表示为 P(AB) 或者P(A,B),或者P(A∩B)

1.3.概率的独立性

当两个随机事件A与B满足:

 说明它们是统计独立的

二、一些随机变量及其分布

2.1离散型随机变量及其分布律

2.1.1离散型随机变量的定义

若一个随机变量最多有可数的可能结果,则称这个变量是离散型随机变量(有限个或者无限可数)。

对于一个离散型随机变量X ,定义X 的概率分布列p(a)为

 2.1.2分布函数与概率密度函数

分布函数:分布函数F(X)表示x小于等于X时发生的概率

概率密度函数:表示事件发生在x附件的概率(在连续性变量出现,离散型下感觉就是p(x))

2.1.3两点分布b(1,p)

随机变量X只有0、1两个值,分布律p(k):

2.1.4二项分布b(n,p)

重复n次伯努利试验(即每次实验满足两点分布),则某一事件X表示事件A发生的次数。那么显然在n次实验中,发生A的次数为k,Aˉ的次数即为n-k。即n次实验中,发生k次的概率:

 2.1.5泊松分布

 2.2连续性随机变量及其概率密度

概率密度函数f(x):

2.2.1均匀分布

如果离散型随机变量的概率密度函数满足这样,则该变量的分布即为均匀分布,记作X~U(a,b). 

2.2.2指数分布

2.2.3正态分布

标准正态分布N(0,1):即均值为0,标准差为1的正态分布
 

正态分布(高斯分布):

 2.2.4常用分布汇总

三、分布函数及其性质

3.1分布函数的概念:

设X是随机变量,x是任意实数,则

为随机变量X的分布函数,记作X~F(x) 

3.2分布函数的性质(定义域R,值域[0,1],单调不减右连续):

1.F(x)是x的单调不减函数

2.F(x)是x的右连续函数

3.

 

四、随机变量函数的分布(分布函数法,公式法)

1.公式法:略

2.分布函数法(更常用):

五、多维随机变量的联合分布

当随机变量相互独立时,联合等于边缘的乘积,以二维为例:

六、随机变量数字特征

1.随机变量期望和方差的计算

2.期望与方差的性质(独立):

七、切比雪夫不等式

设随机变量X的方差D(X)存在,则对任一实数ϵ>0,都有:

其实质就是对|X-EX|≥ ϵ这一事件(X相对于概率平均值偏离情况)发生概率的一个保守估计。

八、极限定理

8.1辛钦大数定理

即,独立同分布的随机变量序列的算数平均值依概率收敛于期望(注意是依概率收敛)

8.2伯努利大数定理

即,独立重复实验中,频率收敛于概率

8.3独立同分布的中心极限定理(CLT)

 它描述了当从总体中抽取大量独立随机样本,并计算这些样本的均值时,样本均值约等于总体均值,且不要求总体分布类型,样本均值服从正态分布。要点:

1.样本大小:CLT要求样本大小足够大,通常认为当样本大小(n)大于等于30时,CLT开始生效。即越明显呈现依总体均值的正态分布

2.独立同分布:样本须是独立抽取,且具有相同的分布

3.总体分布不限制:CLT并不要求原始总体必须服从正态分布,它可以适用于任何总体分布,包括均匀分布、指数分布、二项分布等

九、常用工具

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值