绝对式编码器编码方式整理
一、概述
绝对式角位移传感器可以对整个圆周任意位置的角度进行直接读取,由于每个位置都有唯一性并且相互独立,在数据的测量过程中不会因为前面的测量误差对后续的测量结果带来影响。目前,对于绝对式编码,现在主要可以将其分成四大类:二进制编码方式、游标编码方式、图像编码方式以及角位移编码方式。其中,二进制编码方式以及游标编码方式是目前最为主要流行的编码方式。
在这里,将主要对二进制编码的编码方式加以详细说明,包括其发展历程、编码类别、码道产生原理、电子细分技术、优缺点、校验方法等,并且主要目标对象是优越性较强的单码道编码以及准绝对式编码(双码道编码)。对于游标编码方式,也以一个例子给出其较为主流的编码原理介绍。而对于图像编码方式以及角位移编码方式,由于已经脱离了一般编码,仅简要说明其特点。
二、二进制编码的基本进程
1.基本情况:
(1)绝对位置编码的发展过程是以唯一性和单变性为基础特性,以单码道性为最终目标进行编码矩阵列数的缩减。
目前,编码类型的发展经历了 n 条码道的反射式格雷码、n/3条码道矩阵码、2 条码道的 m 序列码以及 1 条码道的单码道格雷码。
(2)发展方向:由于单码道格雷编码理论尚不完善,仍依赖搜索获得编码,因此其快速构造方法是未来绝对位置编码理论的发展方向。
2.反射式格雷码
2.1应用范围:
目前工业上使用最多的绝对式编码方法
2.2优点:
具有唯一性和单变性,编码可靠
2.3缺点:
n 位分辨率码盘需要 n 条码道,分辨率越高,码道数目越多,编码器径向尺寸越大,使得高分辨率和小型化产生冲突。
2.4产生原理:
反射式格雷码是一种无权二进制码,码字没有重复,满足唯一性,相邻码字仅有一位发生变化,满足单变性。
图1 反射式格雷码产生方式
通过对n位字长格雷码反射一次可以将码字的数目提高一位,再将上半部分的最高 0,下半部分补 1,即可获得同时具有唯一性和单变性的n+1位格雷码。反射补位的构造方法使格雷码具有特殊规律,每一位编码都具有序列d=0110 的形式,区别在于0 和 1 的长度随着位权的增加而增长。
3.矩阵码
3.1基本来源:
矩阵码是传统反射式格雷码的一种变形,可用于绝对位置检测。矩阵码将传统格雷码不同位权的编码刻画在一圈码道上,再利用逻辑算法实现合适的光敏探头的选择,其最终的输出与传统格雷码相同。
3.2优点:
相对传统反射式格雷码,码道数目大大减少。
3.3缺点:
需要使用复杂的矩阵逻辑译码电路和额外的光敏探头才能完成适当的选通。
3.4示例:
8位字长矩阵码盘。(码道数目缩减为 3 条,采用传统反射式编码为8条)
图2 8位字长矩阵码盘示意图
图3 8位字长反射式格雷码的输出
3.5总结:
使用矩阵码对2n个绝对位置进行编码,可将码道数目约缩减为n/3条,将大大减小编码器径向尺寸。
4.伪随机序列:m序列码
4.1基本概念:
最常用的伪随机序列之一是m序列,由于其容易产生、规律性强,而且具有许多优良的性能,因此是最早得到广泛应用的,同时如序列等很多伪随机序列都是由序列衍生而来的。其以二进制的反馈移位寄存器序列用于绝对位置编码
4.2二进制的反馈移位寄存器序列:
通常被称为线性反馈移位寄存器序列,是一种利用移位寄存器和反馈逻辑生成伪随机序列的技术。可由K阶本原多项式生成。
4.2.1LFSR简介:
1.LFSR是一种移位寄存器,其中每次移位时的输入位是寄存器中某些位的线性组合(通常是异或操作)
2.寄存器的长度为n位,这意味着LFSR序列的周期最长可达2n-1
3. LFSR 的输出是一种 伪随机序列
4.2.2工作原理:
1.反馈移位:LFSR 中每个寄存器在每个时钟周期将其内容向右移动一位,最左边的输入位由寄存器的某些位的异或结果得到。
2.反馈多项式:寄存器位的选择由一个称为反馈多项式的多项式来决定,这个多项式定义了寄存器中哪些位需要进行异或操作。
例如,反馈多项式为x4+x3+1表示一个 4位 LFSR,其中 第4位和第3位的值进行异或,然后输入到最左位。
4.2.3例子:
假设我们有一个 4位 LFSR,反馈多项式为x4+x3+1:
- 初始状态:假设初始寄存器状态为1000
- 反馈计算:根据多项式,计算寄存器 第4位和第3位的异或,得到反馈位
- 移位:
当前寄存器状态为 1000;
计算反馈位:1 ⊕ 0 = 1;
进行移位,结果为:1100。
- 继续移位:
当前寄存器状态为 1100;
计算反馈位:1 ⊕ 1 = 0;
移位后结果为:0110
通过不断移位,LFSR 会生成一个长度为24-1的序列,这个序列是伪随机的,并且具有很长的周期性。
4.2.4LFSR 序列的性质:
1. 最大长度序列(m序列):如果选择的反馈多项式是本原多项式,LFSR 生成的序列将具有最大长度,为2n-1,其中n是寄存器的位数。
2. 伪随机性:LFSR生成的序列在统计特性上表现为随机序列。例如,序列中0和1出现的次数大致相同,适用于伪随机数生成。
3.周期性:LFSR 序列的长度和反馈多项式的选择有关,如果选择不当,序列的周期可能会小于2n-1.
4.3m序列绝对编码
反馈移位寄存器系统都服从一个反馈逻辑函数 xn= f ( x0,x1,⋯,xn- 1),当给定初始的 n个状态 ( x0,x1,⋯,xn- 1) 后,通过逻辑函数 f 即可得到第 n + 1 个状态 xn。通过一个线性反馈移位寄存器系统的不断移位可以得到一个无限长二进制序列,其周期为 P。全部P个状态具有唯一性。其中,P=2n-1。
由于n 位为全“0”的状态无法使用,在实际编码时,可以将全“0”的码字加入一个 n 位字长 m 序列的适当位置以实现 2n个饱和位置的编码。
4.4缺点:
不具有单变性,大大降低了编码的可靠性。相邻码字存在多位变化,由于加工安装的偏差以及器件的不同步必然会导致误码的出现。
4.5容错机制:
为避免误码造成的粗大误差,应用m序列设计绝对式旋转编码器时,必须添加一圈同步码道,在脉冲圆盘上平行地制作与M系列码相同脉冲数的增量图形,再把绝对值部分的检出器的间隔变成1/2节距。因此,使用 m 序列对绝对位置进行编码,需要的码道数目为 2。
4.6示例:
4.6.1整体介绍:
图4为一个 4 位字长m 序列绝对式单码道格雷码的码盘及探头分布示意图,外圈的光栅为同步码道,内圈为m序列编码。
图4 4位字长m序列码盘及探头分布示意图
由于在初始的n-1个位置无法获得角度信息,可使用阵列式电荷耦合器件(CCD)代替紧密排列的探头进行信号读取。
5. 单码道格雷码
5.1单码道格雷码的定义
单码道格雷码的单码道性来源于其码字矩阵的各列移位等价,因此n 条图案相同码道可以缩减为1 条码道,仍保持了普通格雷码的唯一性和单变性。
5.2发展现状
单码道的分类如图5。目前,定义了d⁃股项链式单码道格雷码,实现了目前全部单码
图5 单码道格雷码分类
道格雷码的统一,按照股数d 的不同分为 3 类:当 d = 1 时,为传统的项链式单码道格雷码;当 d = n 时,为传统的自互反项链式单码道格雷码;当 1< d < n 时,为新发现的
编码类型,称为多股项链式单码道格雷码。其中,d为n的任意整数因子,n为编码字长位数,且这3类编码之间可以实现相互转换。
5.3实例
一个 5 位字长 30 个位置的单码道格雷码的码字表示为
每一位编码与相邻位之间均移位等价,仅需要循环移动 3 个位置 2 位编码就会重叠。
应用具有单变性的编码设计码盘,码盘上只需刻画一条码道,n个光敏探头按照各个位循环移位的数目排列即可复现 n 位码字矩阵实现绝对位置的检测。图 8 为使用上述例子设计的码盘图案及光敏探头分布示意图。
图6 5位字长30个位置单码道格雷码码盘图案及探头分布示意图