bs4
bs4 进行数据解析
数据解析原理:
bs4数据解析的原理:
- 1.实例化一个BeautifulSoup对象,并且将页面源码加载到该对象中
- 2.通过调用BeautifulSoup对象中相关的属性或者方法进行标签定位和数据提取
环境安装
- pip install bs4
- pip install lxml
如何实例化BeautifulSoup对象:
- 1.导包
python from bs4 import BeautifulSoup
- 2.对象的实例化
- 2.将互联网上获取的页面源码加载到该对象中
```python
#通常用这个
page_text = response.text
soup=BeatifulSoup(page_text,'lxml')
提供的用于数据解析的方法和属性:
- 1.soup.tagName:返回的是文档中第一次出现的tagName对应的标签
- 2.soup.find():
- find(‘tagName’)等同于soup.div
- 属性定位:
-soup.find(‘div’,class_/id/attr=‘song’)
- 3.soup.find_all(‘tagName’):返回符合要求的所有标签(列表)
select:
- 1.select(‘某种选择器(id/class/标签…选择器)’),返回一个列表。
- 2.层级选择器:
- soup.select(".tang > ul >li > a"): >表示的是一个层级
- soup.select(’.tang > ul a’):空格表示的是多个层级
- 如何获取标签之间的文本数据:
- soup.a.text/string/get_text()
- text/get_text():可以获取某一个标签中所有的文本内容
- string:只可以获取该标签下面直系的文本内容
- 如何获取标签中属性值:
实战案例:
import requests
from bs4 import BeautifulSoup
if __name__ == "__main__":
url = "https://www.shicimingju.com/book/sanguoyanyi.html"
heraders = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.81 Safari/537.36 SE 2.X MetaSr 1.0"}
page_text = requests.get(url=url, headers=heraders).text
soup = BeautifulSoup(page_text, 'lxml')
li_list = soup.select('.book-mulu > ul > li')
fp=open('./sanguo.txt','w',encoding='utf-8')
for li in li_list:
title = li.a.string
detail_url = 'https://www.shicimingju.com' + li.a['href']
detail_page_text = requests.get(url=detail_url, headers=heraders).text
detail_soup = BeautifulSoup(detail_page_text, 'lxml')
div_tag=detail_soup.find('div',class_='chapter_content')
content=div_tag.text
fp.write(title+':'+content+'\n')
print(title,'爬取成功!!!')