【小tips】当机器里面有多个版本的gcc时,该如何切换当前的gcc版本?


背景

有时候因为项目需求,可能不同的项目需要不同的gcc版本,所以机器上会安装多个版本的gcc,那我们如何切换到想要使用的版本?

切换gcc版本

比如我的机器上有两个版本的gcc:
在这里插入图片描述

我当前的版本是gcc-4.8.3

而我的项目需要gcc-8及以上版本,该如何切换?

  1. 先看下gcc的运行路径 :which gcc
    在这里插入图片描述

  2. 将 /usr/bin/gcc 移除: mv /usr/bin/gcc /usr/bin/gcc-4.8.2
    在这里插入图片描述

  3. /usr/bin/gcc 指向 gcc安装目录下的 bin/gcc : ln -s /home/opt/compiler/gcc-8.2/gcc-8.2/bin/gcc /usr/bin/gcc
    在这里插入图片描述

最后检查一下gcc版本:gcc -v
在这里插入图片描述

这样就成功切换啦。本质就是更改软连接 /usr/bin/gcc 的指向。并且/usr/bin/gcc在全局变量PATH中

在这里插入图片描述

<think>好的,我现在需要详细解答用户关于德布鲁因图在基因组拼接中生成contigs的具体步骤和方法。用户之前已经询问过德布鲁因图的基本概念和应用,现在想深入了解如何从构建德布鲁因图到生成contigs的详细流程。我需要结合之前的回答和用户提供的引用资料,给出结构清晰、分步骤的解释。 首先,用户提供的引用资料提到德布鲁因图是通过k-mer分解reads,然后构建节点和边,最终形成contigs。而用户之前的问题中,我也介绍了德布鲁因图的基本结构和构建过程,但可能不够详细。现在需要细化步骤,可能包括k-mer的选择、图的构建、简化图的方法(比如处理错误和重复)、路径遍历等。 接下来,我需要确保每个步骤都清晰,并引用提供的参考资料。例如,引用[1]提到德布鲁因图和OLC的区别,引用[2]强调了测序深度和从头组装的重要性,引用[3]则描述了如何通过重叠生成contig。这些内容需要整合到步骤中。 可能还需要考虑实际应用中的问题,比如如何处理测序错误、重复序列对图的影响,以及如何选择参数k。这些内容在用户之前的问题中也提到过相关问题,需要适当关联。 另外,用户提供的示例代码展示了如何构建德布鲁因图,但生成contigs的部分可能需要进一步解释,比如如何从邻接表到找到欧拉路径,或者如何处理分支点。需要将这些算法细节用中文通俗地解释出来,避免过于技术化。 最后,用户希望步骤详细,可能需要分点列出,每个步骤包含关键操作和技术要点,并适当引用参考资料中的内容。同,检查是否符合之前的系统级指令,比如数学表达式的格式是否正确,是否有生成相关问题等。</think>### 德布鲁因图构建 Contigs 的详细步骤 德布鲁因图在基因组拼接中生成 **contigs** 的核心流程可分为 **k-mer分解、图构建、图简化和路径遍历** 四个阶段。以下是具体步骤和技术细节: --- #### 一、k-mer 分解与节点生成 1. **参数选择** 选择合理的 **k-mer长度(k值)**: - **k值较小**:对测序错误敏感(短k-mer易被错误覆盖),但能处理低覆盖区域。 - **k值较大**:抗噪性强,但可能因覆盖不均导致图断裂[^2]。 - 通常根据测序读长和错误率调整,例如 Illumina短读(~150 bp)常用 $k=21$ 或 $k=31$[^1]。 2. **生成所有k-mer** 将每条测序读段(read)切割为连续且重叠的k-mer。例如,读段 `ATGCCA`(k=3)分解为: $$ ATG, TGC, GCC, CCA $$ 所有k-mer构成图的节点集合。 --- #### 二、构建德布鲁因图 1. **定义节点与边** - **节点**:每个唯一的k-mer对应一个节点。 - **边**:若两个k-mer之间存在 $(k-1)$-mer 重叠,则建立有向边。 例如,k-mer `ATG`(后缀 `TG`)与 `TGC`(前缀 `TG`)之间建立一条边[^3]。 2. **压缩冗余边** 合并重叠关系相同的边,记录边的权重(出现次数),以区分真实信号与测序错误。 - **高权重边**:代表真实基因组中连续的序列。 - **低权重边**:可能由测序错误或罕见变异导致[^1]。 --- #### 三、图简化与纠错 1. **去除低权重分支** 删除权重低于阈值的边和孤立节点(如权重=1),消除测序错误引入的“气泡”或“尖端”(tips)[^2]。 2. **合并线性路径** 将无分支的连续节点(如 `A → B → C`)合并为 **超节点(supernode)**,简化后的路径直接表示更长的唯一序列(即contig候选)。 3. **处理重复序列导致的循环** 基因组中的重复区域会在图中形成 **循环(cycles)** 或 **复杂分支**。常用策略包括: - 根据测序深度判断重复拷贝数。 - 切割循环,选择覆盖度最高的路径[^3]。 --- #### 四、路径遍历生成 Contigs 1. **寻找欧拉路径** 在简化后的图中,若存在一条遍历所有边的路径(欧拉路径),则该路径可直接生成完整基因组序列。实际中,由于重复和断裂,需生成多条局部路径[^1]。 - **贪心算法**:从高覆盖度边开始延伸,直至无法继续。 - **迭代合并**:逐步连接重叠的contigs。 2. **输出 Contigs** 将遍历路径的k-mer序列按重叠部分拼接,得到contigs。例如,路径 `ATG → TGC → GCC → CCA` 合并为: $$ ATGCCA $$ --- ### 关键挑战与优化 1. **测序错误处理** - 过滤低频k-mer(如仅保留出现≥2次的k-mer)。 - 使用纠错算法(如BayesHammer)预处理reads[^2]。 2. **重复序列应对** - 结合双端测序(paired-end)信息约束contig长度,辅助解决重复区域[^3]。 3. **参数调优** - 动态调整k值(如从较小k开始逐步增加)。 - 根据contig N50(衡量组装连续性的指标)评估结果质量[^1]。 --- ### 示例流程图示 ``` 测序 Reads → k-mer分解 → 德布鲁因图 → 图简化 → 路径遍历 → Contigs ``` --- ### 相关问题 1. 如何评估不同k值对contig长度和准确性的影响? 2. 德布鲁因图在处理长读长测序数据(如PacBio)有哪些局限性? 3. 如何结合双端测序数据优化复杂分支的路径选择? 通过以上步骤,德布鲁因图将短读序列转化为连续contigs,为后续基因组完成图(scaffold)构建奠定基础[^1][^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不怕娜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值