大纲
1.哈希表存储方式
2.哈希表应用:散射表
3.哈希表变形:字符串哈希
4.例题
1.哈希表存储方式
(1)主要思想
哈希表的主要思想是将一个大空间,映射到一个系统可以承受的小空间,一般是映射为0~N。
一般常见的是将0 ~ 1e9映射成0 ~ 1e5,1e9的空间肯定是会爆的吧。
说实话很像离散化
(2)哈希冲突
哈希表的核心是一个哈希函数f(x),对于一个数字x(0 ~ 1e9),映射为y(0~1e5)。
实现:
方法1:取模
直接将x对1e5取模即可。
常见问题:哈希冲突
哈希冲突:将两个不同的数映射成了同一个数。
比如:10和1e6,1e6 mod 1e5 = 10, 10 mod 1e5 = 10, 哈希函数值相同
所以需要找到一种更好的函数解决哈希冲突这个问题。
(3)哈希正确实现方法1
实现方法:拉链法
用一个1e5的一维数组,来存储哈希值。
哈希冲突解决方式:当把一个x映射到某一个数的时候,将mod的结果(y)的下面拉一条链x。
这样如果有两个哈希值冲突的话,就会把这两个值都拉一条链。这个链可以使用单链表实现,每次在查找x的时候就在hash[y]下面的链找一遍看看有没有x。
取模的数最好的数是一个质数并且离2的整数幂远,这个在数学上是可以推到出来的,在这里不多说了。
题目如果有负数的话有两种应对办法:
1.开两个哈希表(负数,正数)。
2.小技巧:(x%mod+mod)%mod
拉链法实现:
步骤0:定义链表,并初始化。
const int maxn=1e5+3; //10003是1e5上最小的质数
int h[maxn],e[maxn],ne[maxn],idx;
void init(){
memset(h,-1,sizeof(h));
}
步骤1:对x加入hash
得到x对应的f(x),并且通过链表拉条链x。
void add(int x){
int k=(x%maxn+maxn)%maxn;
e[idx]=x; //加一条链
ne[idx]=h[k];
h[k]=idx++;
}
步骤2:查询x是否在hash里
得到对应的f(x),并且遍历hash[f(x)]的链,查询是否存在x。
bool find(int x){
int k=(x%maxn+maxn)%maxn;
for(int i=h[k];~i;i=ne[i])
if(e[i]==x)return 1;
return 0;
}
(4)哈希正确实现方法2
实现方法:开放寻址法
哈希冲突解决方法:
首先数组需要开到2~3倍。
设f(x)=y,那么首先看hash[y]是否已经有hash值了,如果是,就往后移动一格,重复操作1,直到hash[z]没有hash值了,就存入x
首先初始化为一个不可能的值,接下俩就可以一个while循环判断当前hash[i]位置是否有hash值,一直往后移模拟即可。
开放寻址法代码实现:
步骤0:初始化为0x3f3f3f3f
const int maxn=2e5+3; //同
int h[maxn];
void init(){
memset(h,0x3f,sizeof(h));
}
步骤1:find(x)函数,如果hash[f(x)]没有值,就直接返回f(x)即可,否则返回后面第一个没有hash值的位置。
注意:在判断的时候还需要判断当前位置不为x,x有可能以前存在过,就别让它在跑下去了。
int find(int x){
int k=(x%maxn+maxn)%maxn;
while(h[k]!=0x3f3f3f3f&&h[k]!=x){
k++;
if(k==maxn) k=0;
}
return k;
}
没有步骤2了
2.哈希表应用散射表
hash-散射表
题意:
一个集合。
操作1:将x加入集合
操作2:问x是否存在于集合中。
两种方法直接用即可。
拉链法:
/*
拉链法
*/
#include<bits/stdc++.h>
#define FOR(x,y,z) for(int x=y,x_=z;x<=x_;x++)
#define DOR(x,y,z) for(int x=y,x_=z;x>=x_;x--)
#define ll long long
using namespace std;
void read(int& x){
char c;x=0;
int f=1;
while(c=getchar(),c<'0'||c>'9')if(c=='-')f=-1;
do x=(x<<3)+(x<<1)+(c^48);
while(c=