✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在当今的工业生产与设备运维领域,剩余使用寿命(Remaining Useful Life,RUL)预测已成为可靠性工程和预测性维护的关键环节,发挥着举足轻重的作用。
从成本控制角度来看,准确的 RUL 预测能大幅降低维护成本。以往传统的定期维护策略,不管设备实际状况如何,都按照固定周期进行维护和零部件更换。这往往导致过度维护,造成资源的浪费 ,例如一些零部件在远未达到实际使用寿命时就被更换。而通过 RUL 预测,企业可以精准把握设备的实际健康状态,只有在设备接近失效时才进行维护和更换,大大减少了不必要的维护支出。某汽车制造企业在引入 RUL 预测技术后,其关键生产设备的年度维护成本降低了 20% ,有效提升了企业的经济效益。
在效率提升方面,RUL 预测同样贡献卓越。它能帮助企业避免计划外停机带来的生产中断。计划外停机不仅会导致生产停滞,还可能引发一系列连锁反应,如订单交付延迟、客户满意度下降等。以半导体芯片制造行业为例,其生产线一旦因设备故障意外停机,每小时的损失可达数百万美元。通过 RUL 预测,企业能够提前知晓设备的潜在故障风险,提前安排维护,保障生产的连续性,提高生产效率。
基于此,RUL 预测在工业领域中愈发重要。在众多预测方法中,基于 Wiener 维纳过程模型的 RUL 预测方法脱颖而出,凭借其独特的优势在设备寿命预测中占据重要地位。接下来,我们将深入探讨 Wiener 维纳过程模型在 RUL 预测中的原理、应用及发展。
Wiener 维纳过程模型基础
(一)Wiener 过程定义
Wiener 过程,又被称作布朗运动,在随机过程理论里占据着极为关键的位置。1827 年,英国植物学家罗伯特・布朗(Robert Brown)在显微镜下观察到悬浮在液体中的花粉颗粒进行着无规则的运动 ,这便是布朗运动的首次发现。直到 1905 年,爱因斯坦从物理学角度对其进行了解释,1918 年诺伯特・维纳(Norbert Wiener)将其精确地数学公式化,自此 Wiener 过程成为了一个严格定义的数学概念。
⛳️ 运行结果
📣 部分代码
clc
clear;
close all;
%%导入数据
load('data.mat'); %加载数据
cs_data = HHHH(1:1000,1); %提取0-1之间的数据
windowsize = 40; %平滑处理,窗口设置大小
mm_data = movmean(cs_data, windowsize);
data=mm_data(91:830,1)-mm_data(90,1);
figure(1) %绘制指标图像
subplot(3,1,1)
plot(cs_data,'Color','k','LineWidth',1.5)
subplot(3,1,2)
plot(mm_data,'Color','k','LineWidth',1.5)
subplot(3,1,3)
plot(data,'Color','k','LineWidth',1.5)
data=data;
%%定义变量
n = length(data);
h = 1; %定义时间间隔
t = [h:h:n*h]'; %定义时间长度
jg = 30; %定义估计的时间间隔
D = max(data); %定义阈值
l_fw = 1000; %定义估计剩余使用寿命的时长范围
%%参数估计——(需要估计三个参数)
gj_mu = zeros(n,1); %定义漂移系数的均值
gj_sigma_muf = zeros(n,1); %定义漂移系数的均值
gj_sigmabf = zeros(n,1); %定义扩散系数
for k= 1:n
N = k;
T = t(1:N,1);
X = data(1:N,1);
%定义Q矩阵
Q=zeros(N,N);
j=1;
for i=1:N
Q(i,j:N)=T(i);
Q(j:N,i)=T(i);
j=j+1;
end
omiga3_ =@(sigma_b_a) sigma_b_a.^2.*Q;
mu_a3 =@(sigma_b_a) (T'*pinv(T*T'+omiga3_(sigma_b_a))*X)/(T'*pinv(T*T'+omiga3_(sigma_b_a))*T); %漂移系数
sigma_muf3 =@(sigma_b_a) ((X-mu_a3(sigma_b_a).*T)'*pinv(T*T'+omiga3_(sigma_b_a))*(X-mu_a3(sigma_b_a).*T))/N;
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇