邻接矩阵弗洛伊德

该博客主要介绍了如何运用Floyd算法来求解图中任意两点间的最短路径。通过初始化矩阵并逐步更新最短路径,最终得到完整的最短路径信息。示例代码展示了在一个4节点图中应用该算法的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<stdio.h>
#include<stdlib.h>
#define INF 9999999
#define MaxSize 50
typedef struct{
	char vex[MaxSize];
	int edge[MaxSize][MaxSize];
	int vexnum,arcnum;
}MGraph;

void Floyd(MGraph G){
	int A[MaxSize][MaxSize],path[MaxSize][MaxSize];
	for(int i=0;i<G.vexnum;i++){    //初始化A和path[]
		for(int j=0;j<G.vexnum;j++){
			A[i][j]=G.edge[i][j];
			path[i][j]=-1;
		}
	}
	for(int k=0;k<G.vexnum;k++){
		for(int i=0;i<G.vexnum;i++){
			for(int j=0;j<G.vexnum;j++){
				if(A[i][j]>A[i][k]+A[k][j]){
					path[i][j]=k;
					A[i][j]=A[i][k]+A[k][j];
				}
			}
		}
	}
	

}
int main(){
	MGraph G;
	int dist[MaxSize],path[MaxSize],i;
	G.vexnum=4;G.arcnum=4;
	G.vex[0]='A';G.vex[1]='B';G.vex[2]='C';G.vex[3]='D';
	G.edge[0][0]=INF;G.edge[0][1]=4  ;G.edge[0][2]=6  ;G.edge[0][3]=2;  
	G.edge[1][0]=4  ;G.edge[1][1]=INF;G.edge[1][2]=INF;G.edge[1][3]=INF;
	G.edge[2][0]=6  ;G.edge[2][1]=INF;G.edge[2][2]=INF;G.edge[2][3]=1;
	G.edge[3][0]=2  ;G.edge[3][1]=INF;G.edge[3][2]=1  ;G.edge[3][3]=INF;
	
	Floyd(G);
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值