基于黏菌优化算法SMA优化LSTM的时间序列预测

本文介绍了使用黏菌优化算法SMA来优化LSTM网络超参数,以提升时间序列预测的准确性。SMA算法模拟黏菌的行为,通过调整LSTM的学习率、批次大小、训练次数和隐藏层节点数等超参数,实现实时预测性能的显著提升。实验结果显示,SMA-LSTM模型在预测效果上优于未优化的LSTM模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  0 引言

        基于LSTM进行时间序列预测方法简单有效。LSTM的出现为时间序列预测提供了一个新的研究方向。然而,与大部分网络模型一样,LSTM效果受其超参数设置的影响。为此,本文采用黏菌优化算法AOA优化LSTM网络超参数,建立SMA-LSTM模型 ,  实例验证表明 , SMA-LSTM 模型的预测效果明显提高。

1 原理

1.1 LSTM原理

       此处不过多介绍!

1.2 黏菌优化算法

        黏菌优化算法Slime Mould Algorithm(SMA)是由 Li等人于 2020年提出的一种模拟黏菌在规食过程中的行为和形态变化的新型群体智能优化算法,其灵感启发来源于模拟多头绒泡菌的规食行为和形态变化,利用权值的变化模拟规食过程中黏菌本体产生的正反馈和负反馈过程,迚而产生三种阶段规食形态。该算法具有一定的收敛精度和较好的稳定性,因此已被广泛应用于优化应用领域。

 1.3 SMA优化LSTM原理

        以最小化LSTM网络的误差为适应度函数,SMA的作用就是尽量去找一组最优超参数使得网络误差最小化。本文中LSTM的主要几个超参数分别是:学习率lr,batchsize,训练次数K,两个隐含层的节点数L1和L2。
 

2 代码实现

        基于MATLAB2020b,进行模型搭建与优化。数据结构为时间序列,我们采用前n个时刻的值为输入,n+1时刻 的值为输出这样来进行滚动建模。

2.1 LSTM结果

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值