softmax交叉熵损失函数深入理解(二)

0、前言

        前期博文提到经过两步smooth化之后,我们将一个难以收敛的函数逐步改造成了softmax交叉熵损失函数,解决了原始的目标函数难以优化的问题。Softmax 交叉熵损失函数是目前最常用的分类损失函数,本博文继续学习Softmax 交叉熵损失函数的改进,详细的理论参考论文《基于深度学习的人脸认证方法研究》,这篇论文真的太棒了,是我见过最优秀的专门针对损失函数进行深入研究的杰作。

1、Softmax 交叉熵损失函数

 (1)Softmax 交叉熵损失函数表达

        将样本分为 C 个类别,在使用 Softmax 交叉熵损失时,需要将神经网络的最后一层输出设置为 C。设置理想向量q=[q_{1},q_{2},...,q_{c}], Softmax 交叉熵损失函数表示如下:

\l _{s}=-\sum q_{i}logp_{i}

其中:P_{i}=\frac{e^{z_{i}}}{\sum(e^{z_{i}})}

Softmax 交叉熵损失函数实际上分为两步:

1)求 Softmax : 得到当前样本属于某类别的概率P_{i}=\frac{e^{z_{i}}}{\sum(e^{z_{i}})}

2)求交叉熵损失

       将1)计算所得概率与理想向量求交叉熵:

       ①如果理想向量为 One-hot 向量,即仅在第 y 个位置为 1,其他部分为 0,所以最终只保留了第 y 个位置的交叉熵。此时的Softmax 交叉熵损失函数表示为:

\l _{s}=-logp_{y}

 梯度为:

        ②如果理想分布不再是 One-hot 向量,而是一组其他概率值时q=[q_{1},q_{2},...,q_{c}],交叉熵损失函数为:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值