预处理?看这一篇就够了

本文介绍了CSS预处理器的概念和背景,以Sass为例展示了如何通过预处理器简化CSS代码编写,包括变量、运算、条件语句、嵌套、循环和代码重用等特性。此外,还提到了其他代表性的预处理器如Less和Stylus,并提供了学习Sass前的准备工作,包括VSCode插件配置和基本语法示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

CSS 自诞生以来,基本语法和核心机制一直没有本质上的变化,在很长一段时间内,它的发展几乎全是表现力层面上的提升。

​ 最开始 CSS 在网页中的作用只是辅助性的装饰,轻便易学是最大的需求;然而如今网站的复杂度已经不可同日而语,原生 CSS 已经让开发者力不从心。

​ 当一门语言的能力不足而用户的运行环境又不支持其它选择的时候,这门语言就会沦为 “编译目标” 语言。开发者将选择另一门更高级的语言来进行开发,然后编译到底层语言以便实际运行。于是,在前端领域,天降大任于斯人也,CSS 预处理器应运而生。

概念

CSS 预处理器是一个能让你通过预处理器自己独有的语法来生成 CSS 的程序。简而言之,最终还是生成CSS代码,但是会让我们书写CSS代码更加方便快速

光看概念还是理解不了,举个栗子
假设现在有这样一个需求摆在我们面前:画一个太阳,画一个太阳肯定不难啊,打开编译器新建文件,开始画太阳

<body>
	<div class="sun">
	</div>
</body>

太阳应该是一个圆的红的物体,并且周围有光芒,要表示光芒这里就用有颜色的条来代替吧,用光条把太阳围一圈就算是光芒了

<body>
	<div class="sun">
		<div class="sun-body">
		</div>
		<div class="sun-light"></div>
	    <div class="sun-light"></div>
	    <div class="sun-light"></div>
	    <div class="sun-light"></div>
	    <div class="sun-light"></div>
	    <div class="sun-light"></div>
	    <div class="sun-light"></div>
	    <div class="sun-light"></div>
	    <div class="sun-light"></div>
	    <div class="sun-light"></div>
	    <div class="sun-light"></div>
	    <div class="sun-light"></div>
	    <div class="sun-light"></div>
	    <div class="sun-light"></div>
	</div>
</body>

然后给它加上样式

<style>
	 * {
     
     
	      margin: 0;
	      padding: 0;
	}

    body {
     
     
      display: flex;
      justify-content: center;
      align-items: center;
      overflow: hidden;
      height: 100vh;
      background-color: #f1f1f1;
    }

    .sun {
     
     
      position: relative;
    }

    .sun-body 
Pandas 是一个强大的 Python 库,专用于数据处理和分析。它提供了一种高效、灵活的方式来操作和管理数据集,并支持一系列数据结构如 Series 和 DataFrame。 ### 什么是 Series? Series 类似于一维数组,可以包含任何类型的条目,包括数字、字符串、日期等。每个元素都有一个对应的索引值,这使得对数据进行基于位置的操作变得简单易行。 ### 什么是 DataFrame? DataFrame 可以视为二维表格,类似于 SQL 数据库中的表或 Excel 的工作表。它可以容纳多种类型的数据并存储在不同的列中,而行则代表不同的观测结果或记录。DataFrame 提供了丰富的函数来进行数据清洗、转换以及数据分析。 ### 基本操作: #### 加载数据: ```python import pandas as pd # 从 CSV 文件加载数据 data = pd.read_csv('example.csv') ``` #### 查看数据概览: ```python print(data.head()) # 显示前五行 print(data.describe()) # 描述性统计信息 ``` #### 按条件筛选: ```python filtered_data = data[data['column_name'] > value] ``` #### 数据排序: ```python sorted_data = data.sort_values(by='column_name', ascending=False) ``` #### 数据分组与聚合: ```python grouped = data.groupby('category_column').sum() # 根据类别求和 ``` #### 合并数据框: ```python combined_data = pd.concat([df1, df2], axis=0) # 横向合并 merged_df = pd.merge(df1, df2, on='id') # 内连接合并 ``` ### 学习 Pandas 的资源: 1. **官方文档**:访问 [pandas.dev](https://pandas.pydata.org/pandas-docs/stable/),这里有详细的操作指南、API 文档和示例代码。 2. **教程网站**:[Real Python](https://realpython.com/) 和 [DataCamp](https://www.datacamp.com/courses/intro-to-pandas-in-python) 提供了全面的学习路径,适合初学者到高级用户。 3. **在线课程**:Coursera、Udemy 等平台上有专门针对 Pandas 的课程,涵盖了基础到进阶的所有内容。 4. **社区与论坛**:加入如 Stack Overflow 或者 r/pandas 在 Reddit 上的讨论区,可以在遇到问题时获得即时的帮助和支持。 通过以上基本知识的学习,你可以有效地利用 Pandas 进行数据预处理、探索性数据分析(EDA)、建模和其他数据分析任务。不断实践和应用是掌握 Pandas 最有效的方式。
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员云锦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值