【嵌入式AI开发】轻量级卷积神经网络MobileNetV2详解

本文深入解析MobileNetV2的结构和设计理念,对比MobileNetV1与ResNet,重点探讨先升维再降维的策略、Inverted Residual Blocks以及线性激活函数的作用,适合嵌入式AI和深度学习开发者阅读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:MobileNetV2网络先升维后降维,在降维时使用线性激活函数,带残差的Inverted bottleck模块,防止ReLU信息丢失。在图像分类、目标检测、语义分割等任务上实现了网络轻量化、速度和准确度的权衡。

回顾MobileNetV1的理论MobileNetV2项目实战可查阅如下链接:

【嵌入式AI开发】轻量级卷积神经网络MobileNetV1详解

【嵌入式AI开发】轻量级卷积神经网络MobileNet项目实战——文末完整源码工程文件

   MobileNetV2原文:

 目录

MobileNetV2概述

MobileNetV1与MobileNetV2对比

MobileNetV2与ResNet深度残差网络的对比

MobileNetV2结构

MobileNetV2举例

​编辑标准卷积、MobileNet深度可分离卷积和MobileNetV2对比

传统/标准残差模块与逆转残差模块对比

论文原文中的哲学抽象直觉和设计原则

MobileNetV2网络结构 

结合Kar

评论 41
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿齐Archie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值