基于PyTorch设计的全景图合成系统

前言

本项目实现基于PyTorch将多张图片合成为一张全景图。(图像存储路径为/images/1)。

使用的图片为:

合成后为:

这个全景图项目主要由四个文件组成:`task.py`、`stitching.py`、`utils.py` 和 `task.json`。以下是对每个文件的详细总结和软件设计细节的描述。

目录

前言

1. `task.py` 文件

1.1主要功能

1.2代码结构

2.`stitching.py`文件

2.1主要功能

2.2代码结构

3.`utils.py` 文件

3.1主要功能

3.2代码结构

4.`task.json` 文件

效果与总结

工程源码下载


1. `task.py` 文件

`task.py` 是项目的主入口文件,负责解析命令行参数、读取输入图像、调用全景图拼接函数并保存结果。

1.1主要功能

1.解析命令行参数:使用 `argparse` 库解析输入路径、输出路径和 JSON 文件路径。

2.读取输入图像:调用 `utils.read_images` 函数读取指定路径下的图像。

3.调用全景图拼接函数:调用 `stitching.py` 中的 `panorama` 函数进行图像拼接。

4.保存结果:调用 `utils.write_image` 保存拼接后的图像,并将结果保存到 JSON 文件中。

1.2代码结构

from stitching import panorama

    import argparse

    import json

    import os

    import sys

    import utils

    

    def parse_args():

        # 解析命令行参数

        ...

    

    def save_results(result_dict, filename):

        # 保存结果到 JSON 文件

        ...

    

    def main():

        # 主函数

        ...

    

    if __name__ == "__main__":

        main()

2.`stitching.py`文件

`stitching.py` 文件包含全景图拼接的核心算法。使用了 `torch` 和 `kornia` 库进行图像处理和特征匹配。

2.1主要功能

1.图像拼接:通过特征匹配和 RANSAC 算法计算图像之间的变换矩阵,并将图像拼接在一起。

2.计算重叠区域:计算图像之间的重叠区域,用于后续的拼接。

2.2代码结构

import torch

    import kornia

    import utils

    from utils import show_image

    

    def stitch_background(imgs: torch.Tensor) -> torch.Tensor:

        # 拼接两张图像

        ...

    

    def panorama(imgs: torch.Tensor):

        # 全景图拼接

        ...

    

3.`utils.py` 文件

`utils.py` 文件包含一些辅助函数,用于图像的读取、显示和保存。

3.1主要功能

1.显示图像:使用 `matplotlib` 库显示图像。

2.读取图像:使用 `torchvision.io` 读取单张图像或目录下的所有图像。

3.保存图像:使用 `torchvision.io` 保存图像。

4.BGR 转 RGB:转换图像的颜色通道。

3.2代码结构

   

 import os, torch

    import zipfile, argparse

    import matplotlib.pyplot as plt

    from torchvision.transforms import functional as F

    import torchvision.io as io

    

    def show_image(img: torch.Tensor, delay=1000):

        # 显示图像

        ...

    

    def read_image(img_path):

        # 读取单张图像

        ...

    

    def read_images(img_dir):

        # 读取目录下的所有图像

        ...

    

    def write_image(input_image: torch.Tensor, output_path: str):

        # 保存图像

        ...

    

    def bgr_to_rgb(img: torch.Tensor):

        # BGR 转 RGB

        ...

    

    def parse_args():

        # 解析命令行参数

        ...

    

    def files2zip(files: list, zip_file_name: str):

        # 压缩文件

        ...

    

    if __name__ == "__main__":

        args = parse_args()

        file_list = ['stitching.py', 'outputs', 'images', 'task2.json', 'bonus.json']

        files2zip(file_list, 'submission_' + args.ubit + '.zip')

    

4.`task.json` 文件

`task.json` 文件是一个示例 JSON 文件,存储了图像之间的重叠信息。在这个项目中,它是一个 4x4 的矩阵,每个元素都是 1.0,表示图像之间的完全重叠。

    [

        [1.0, 1.0, 1.0, 1.0],

        [1.0, 1.0, 1.0, 1.0],

        [1.0, 1.0, 1.0, 1.0],

        [1.0, 1.0, 1.0, 1.0]

    ]

效果与总结

这个全景图项目通过模块化的设计,将图像拼接的各个功能分离到不同的文件中。`task.py` 负责整体流程控制,`stitching.py` 负责核心算法实现,`utils.py` 提供辅助函数,`task.json` 存储图像重叠信息。

工程下载

下载链接:基于PyTorch设计的全景图合成系统.rar(完整源码、设计文档,毕设/课设/竞赛/大创/立项/项目开发)资源-CSDN文库icon-default.png?t=O83Ahttps://download.csdn.net/download/m0_61712829/89474677?spm=1001.2014.3001.5503

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿齐Archie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值