1、对于极限的理解
1.1、贴近法
这个方法是由我自己给出的,其实就是对原定义的进一步解释:
贴近的意思就是指:无论是 x→nx \to nx→n,还是 f(x)→nf(x) \to nf(x)→n,箭头 →\to→ 都是表示一个趋近的过程,也就是说它是运动的,且越来越靠近但永远无法到达,这样的一个行为就叫做贴近,而 nnn 就是所贴近的目标。
limx→0f(x)=A\lim_{x\to 0}f(x)=Ax→0limf(x)=A
以上式子用贴近法来理解就是:当函数 f(x)f(x)f(x) 的自变量 xxx 贴近于 000 时,函数 f(x)f(x)f(x) 就贴近于 AAA(当x→0x \to 0x→0时,f(x)→Af(x) \to Af(x)→A)。
1.2、边缘法
这个方法是我学到海涅定理时想出来的:
由:若 f(x)f(x)f(x) 在 U∘(x0,δ)\stackrel{\circ}{U}(x_0,\delta)U∘(x0,δ)内有定义,则 limx→x0±f(x)\lim_{x\to x_0^{\pm}}f(x)limx→x0±f(x) 存在。
可知:x→0x \to 0x→0 时的 f(x0)f(x_0)f(x0) 描述的是函数在连续地靠近 f(x0)f(x_0)f(x0) 这个间断点时的左右边缘处,这个边缘处的值是无法在实数系中描述的,但可以通过 limx→x0±f(x)\lim_{x\to x_0^{\pm}}f(x)limx→x0±f(x) 来分别获得左右边缘最靠近的实数。
故而可以解释:
(1)当 f(x)f(x)f(x) 在 x=x0x = x_0x=x0 点连续时,此时的边缘最靠近的实数,也就是 limx→x0f(x)\lim_{x\to x_0}f(x)limx→x0f(x),刚好是等于在这一点的函数值 f(x0)f(x_0)f(x0) 的。
(2)函数在这一点也可能不连续,此时的边缘最靠近的实数与 f(x0)f(x_0)f(x0) 就不相等。
(3)边缘最靠近的实数,与 f(x0)f(x_0)f(x0) 完全就是不同意义的数,这也就是为什么说极限值与函数值完全不相干,只是在连续情况下巧合相等而已。
(4)极限存在就是指:左右边缘最靠近的实数相同。
1.3、微元法
1、此方法是学到一元函数微分学想出来的。
2、在实数域中,将实数视为离散的,实数与实数之间的间隙被无数个微元填充,微元的长度为无穷小。
1.4、超实数系法
这个方法由张宇在2025考研中首次提到,我将融入我自己的进一步理解进行解释:
1、超实数系是一个比实数系更大的数学范围,无穷大和无穷小在超实数系中都是有定义的。
2、注意:无穷大和无穷小虽然不是实数,但他们都是广义的常数,故而可以作为函数的极限,可是这样的极限是一种特殊的不存在(后续有详讲)。
3、在超实数系中,每一个实数都拥有自己的超实数域,其特点是:
(1)超实数域的范围趋近于无穷小;
(2)每个实数的超实数域里有无限个超实数,且每个超实数都无限趋近于当前超实数域所属的实数(标准实数部分),也就是说每个超实数与所依附的实数的距离趋近于无穷小(但并不等于所属实数,依然有一段距离)。且每个超实数都仅会依附于唯一的实数。
(3)当某个函数f(x)f(x)f(x)无限趋近于某个实数AAA时,则此函数便进入了这个实数AAA的超实数域,并成为实数AAA的一个超实数。
(4)limx→∙f(x)=A\lim_{x\to\bullet}f(x)=Alimx→∙f(x)=A 中,f(x)f(x)f(x) 为超实数,AAA 为实数,f(x)f(x)f(x) 与 AAA 并不相等,而是还有一段趋于无穷小的距离。
(5)f(x)f(x)f(x) 在没有加上 limx→∙\lim_{x\to\bullet}limx→∙ 时为实数,加上以后 f(x)f(x)f(x) 才成为了超实数。
(6)超实数域中的每一个超实数与其所依附实数的靠近程度虽然无限小,可是不同的超实数的靠近程度却有差异,并且在超实数系中,靠近程度不能简单地使用距离这个概念去理解。
(7)超实数不具有类似于实数的运算规则,故而超实数与实数之间不能发生运算。
4、用超实数系法来理解函数的极限:
limx→0f(x)=A\lim_{x\to0}f(x)=Ax→0limf(x)=A
函数f(x)f(x)f(x)的自变量xxx趋近于实数000(x→0x \to 0x→0),代表着xxx进入xxx轴上实数000的超实数域并成为实数000的一个超实数;此时函数f(x)f(x)f(x)也会趋近于另一个实数AAA(f(x)→Af(x) \to Af(x)→A),即函数f(x)f(x)f(x)也会进入yyy轴上实数AAA的超实数域并成为实数AAA的一个超实数。
此时这个实数AAA就是自变量xxx趋近于实数000时,函数f(x)f(x)f(x)的极限。
5、超实数域仅存在于超实数系中,是无法在实数轴上表现出来的(实数系是宏观,超实数系是微观)。
6、函数 f(x)f(x)f(x) 在 x0x_{0}x0 处的极限值与实际值 f(x0)f(x_{0})f(x0) 是完全无关的,不论在 x0x_{0}x0 点上是否有定义,不能盲目地认为极限值等于实际值,实际上毫无关联,并不一定相等。可是 f(x)f(x)f(x) 在 x0x_{0}x0 的邻域内必须有定义,才能使函数 f(x)f(x)f(x) 在 x0x_{0}x0 处有极限。
7、用原子模型来理解超实数系:
原子核:标准实数。
电子:超实数。
电子所处的区域是圆环:每个超实数所处的圆环。圆环会跟随电子的移动而移动,这些圆环之间的距离有差异,圆环与标准实数的距离也有差距,但是这些距离都是无法衡量出来的。
电子运动的速度:函数 f(x)f(x)f(x) 趋近于极限 AAA 的速度。每个超实数所处的圆环会跟随电子的移动而移动(因为圆环描述的是电子所处的区域),所以这些圆环会跟随电子,不断地向标准实数靠近,可是永远不会到达,只会永久靠近下去。
1.4、无穷小
1、当 limx→∙f(x)=A=0\lim_{x\to\bullet}f(x)=A=0limx→∙f(x)=A=0 时,此时的 f(x)f(x)f(x) 被称为无穷小 。
2、能出现无穷小的情况只有两种:
(1)f(x)f(x)f(x) 这个函数是常数函数 000 ,这是唯一一个身份是常数和实数的无穷小,其他无穷小都不是常数,也不是实数;并且,000 是最高阶的无穷小。
(2)f(x)f(x)f(x) 这个函数在自变量 x→∙x\to\bulletx→∙ 的条件下,f(x)→0f(x) \to 0f(x)→0,也就是说,此时的 f(x)f(x)f(x) 是标准实数 000 的一个超实数,那么此时的 f(x)f(x)f(x) 就是无穷小。
(3)无穷小的本质就是一个超实数,与无穷大一样,它们都仅存在于超实数系中。
(4)任何无穷小(其实质就是一个超实数)的标准实数部分都是 000。
3、无穷小的性质:
(1)有限个无穷小的和还是无穷小;但无限个无穷小的和不一定是无穷小。
(2)有限个无穷小之间的乘积还是无穷小;但无限个无穷小之积不一定是无穷小。
(3)有界函数与无穷小的乘积还是无穷小,因为有界函数的值无非就是个确定的实数 nnn,它是有限的,设无穷小量为 aaa,n∗an*an∗a 的意义就类似于(1)。
(4)两个无穷小的商不一定是无穷小。
(5)两个无穷小的差还是无穷小
总结:两个无穷小的和差积都是无穷小,而两个无穷小的商不一定是无穷小。
4、无穷小的比阶
(1)前提:在自变量 xxx 的同一变化(趋近)过程中,limx→∙a(x)=0\lim_{x\to\bullet}a(x)=0limx→∙a(x)=0,limx→∙b(x)=0\lim_{x\to\bullet}b(x)=0limx→∙b(x)=0,且 b(x)≠0b(x) \neq 0b(x)=0,也就是说此时的 a(x)a(x)a(x) 和 b(x)b(x)b(x) 都是非 000 无穷小;并且 limx→∙a(x)b(x)\lim_{x\to\bullet}\frac{a(x)}{b(x)}limx→∙b(x)a(x) 这个极限必须存在,这就是为什么并非任意的两个无穷小都具有比阶。
(2)实际意义:两个不同的非 000 无穷小量靠近标准实数 000,的速度是有差异的,无穷小的比阶就是用于衡量它们的趋近速度比值,而并非两个超实数实际值的比值。
(3)等价无穷小:limx→∙a(x)b(x)=1\lim_{x\to\bullet}\frac{a(x)}{b(x)}=1limx→∙b(x)a(x)=1 ,表示 a(x)a(x)a(x) 和 b(x)b(x)b(x) 这两个无穷小量趋近标准实数 000 的速度是完全相同的,但也仅表示趋近速度相同,它们的超实数实际值并不相同。
(4)同阶无穷小:limx→∙a(x)b(x)=C,C≠0\lim_{x\to\bullet}\frac{a(x)}{b(x)}=C,C\neq0limx→∙b(x)a(x)=C,C=0 ,表示 a(x)a(x)a(x) 和 b(x)b(x)b(x) 这两个无穷小量趋近标准实数 000 的速度都在同一个量级,但不一定完全相同,可能稍快,可能稍慢。
(5)高阶无穷小:limx→∙a(x)b(x)=0\lim_{x\to\bullet}\frac{a(x)}{b(x)}=0limx→∙b(x)a(x)=0 ,表示 a(x)a(x)a(x) 这个无穷小量趋近标准实数 000 的速度要比 b(x)b(x)b(x) 这个无穷小量趋近标准实数 000 的速度更快,并且快出一个量级或以上。(简洁而言:a(x)a(x)a(x) 比 b(x)b(x)b(x) 更快靠近标准实数 000)
(6)低阶无穷小:limx→∙a(x)b(x)=∞\lim_{x\to\bullet}\frac{a(x)}{b(x)}= \inftylimx→∙b(x)a(x)=∞ ,表示 a(x)a(x)a(x) 这个无穷小量趋近标准实数 000 的速度要比 b(x)b(x)b(x) 这个无穷小量趋近标准实数 000 的速度更慢,并且慢出一个量级或以上。(简洁而言:a(x)a(x)a(x) 比 b(x)b(x)b(x) 更慢靠近标准实数 000)
(7)k阶无穷小:limx→∙a(x)b(x)k=C,C≠0,k>0\lim_{x\to\bullet}\frac{a(x)}{b(x)^k}=C,C\neq0,k>0limx→∙b(x)ka(x)=C,C=0,k>0,则 a(x)a(x)a(x) 是 b(x)b(x)b(x) 的 kkk 阶无穷小。这里的 kkk 代表的就是相差的量级。
5、等价无穷小的延申:
(1)常用的等价无穷小中,可以将 xxx 替换为任意趋近于 000 的 f(x)f(x)f(x)。
(2)任意的两个无穷小:只要满足 limx→∙f(x)g(x)=1\lim_{x\to\bullet}\frac{f(x)}{g(x)}=1limx→∙g(x)f(x)=1,都可以写成 f(x)f(x)f(x) ~ g(x)g(x)g(x),因此只要有另一个在自变量同一变化过程中的 limx→∙h(x)=1\lim_{x\to\bullet}{h(x)}=1limx→∙h(x)=1,则:
f(x)f(x)f(x)~
g(x)g(x)g(x)~
f(x)∗h(x)f(x)*h(x)f(x)∗h(x)~
g(x)∗h(x)g(x)*h(x)g(x)∗h(x)~
f(x)/h(x)f(x)/h(x)f(x)/h(x)~
g(x)/h(x)g(x)/h(x)g(x)/h(x)。
(3)在使用等价无穷小进行等价替换时,若自变量并非趋近于 000,而是 f(x)→nf(x) \to nf(x)→n,则所有的等价无穷小全都 −n-n−n。
例如:
limf(x)→0a(f(x))b(f(x))=1\lim_{f(x)\to0}\frac{a(f(x))}{b(f(x))}=1f(x)→0limb(f(x))a(f(x))=1
则:
limx→na(f(x)−n)b(f(x)−n)=1\lim_{x\to n}\frac{a(f(x)-n)}{b(f(x)-n)}=1x→nlimb(f(x)−n)a(f(x)−n)=1
6、等价无穷小的等价替换实质:
等价无穷小之所以可以替换乘除,是因为极限的四则运算规则:乘积的极限等于极限的乘积。
因为刚好有一些函数极限为 limx→∙f(x)=1\lim_{x\to\bullet}{f(x)}=1limx→∙f(x)=1,故而在自变量 xxx 的同一变化过程中,这些函数极限都可作为单位 111 来使用,而又因为乘积的极限等于极限的乘积,故而可以在极限内中的乘积上产生类似于“替换”的作用。
1.5、无穷大
1、无穷大有两重身份:
(1)作为极限中的函数,即 limx→∙f(x)\lim_{x\to\bullet}{f(x)}limx→∙f(x) 中的 f(x)f(x)f(x),同无穷小一样,属于超实数系,是一个超实数。
(2)作为极限的结果,被视作一个广义的实数,是一个一直在变大的变量,即没有实际值,此时的极限属于特殊的不存在。
(3)注意:无穷小指的是 limx→∙f(x)=0\lim_{x\to\bullet}f(x)=0limx→∙f(x)=0 时的 f(x)f(x)f(x) ;而无穷大既可以指limx→∙f(x)=∞\lim_{x\to\bullet}f(x)= \inftylimx→∙f(x)=∞ 时的 f(x)f(x)f(x) ,也可以指极限结果 ∞\infty∞。
当无穷小指的是 limx→∙f(x)=0\lim_{x\to\bullet}f(x)=0limx→∙f(x)=0 时的 f(x)f(x)f(x),f(x)f(x)f(x) 是作为无穷小的超实数,作为无穷小的超实数有标准实数部分,故而此时的极限是存在的。
当无穷大指 limx→∙f(x)=∞\lim_{x\to\bullet}f(x)= \inftylimx→∙f(x)=∞ 时的 f(x)f(x)f(x) ,f(x)f(x)f(x) 是作为无穷大的超实数,但是作为无穷大的超实数并没有具体的标准实数,故而此时的极限是特殊的不存在,极限的值也为无穷大。
极限结果 ∞\infty∞ 时,此时的极限是一种特殊的不存在,因为只有极限是一个明确的实数值时极限才算存在,而无穷大 ∞\infty∞ 在实数系内指的是广义实数,并不是一个明确的实数。
2、无穷大的性质:
(1)有限个无穷大量的乘积还是无穷大量。
(2)有限个无穷大量之和不一定是无穷大量。
(3)无穷大量与有界量之和还是无穷大量。
(4)无穷大量与非零有界量之积还是无穷大量。
总结:两个无穷大量的积还是无穷大,但两个无穷大的和差商不一定是无穷大。
3、无穷大的比阶
由于:无穷大=1无穷小无穷大 = \frac1{无穷小}无穷大=无穷小1,故而可根据无穷小的比阶推导无穷大的比阶:limx→∙无穷小无穷小⇒limx→∙1无穷小1无穷小⇒limx→∙无穷大无穷大\lim_{x\to\bullet}\frac{无穷小}{无穷小} \Rightarrow \lim_{x\to\bullet}\frac{\frac1{无穷小}}{\frac1{无穷小}} \Rightarrow \lim_{x\to\bullet}\frac{无穷大}{无穷大}limx→∙无穷小无穷小⇒limx→∙无穷小1无穷小1⇒limx→∙无穷大无穷大
(1)前提:在自变量 xxx 的同一变化(趋近)过程中,limx→∙a(x)=+∞\lim_{x\to\bullet}a(x)=+\inftylimx→∙a(x)=+∞且limx→∙b(x)=+∞\lim_{x\to\bullet}b(x)=+\inftylimx→∙b(x)=+∞,或limx→∙a(x)=−∞\lim_{x\to\bullet}a(x)=-\inftylimx→∙a(x)=−∞且limx→∙b(x)=−∞\lim_{x\to\bullet}b(x)=-\inftylimx→∙b(x)=−∞,注意这里有正负无穷的区别,并且 limx→∙a(x)b(x)\lim_{x\to\bullet}\frac{a(x)}{b(x)}limx→∙b(x)a(x) 这个极限必须存在,或为特殊不存在。
(1)等价无穷大:limx→∙a(x)b(x)=1\lim_{x\to\bullet}\frac{a(x)}{b(x)}=1limx→∙b(x)a(x)=1 。
(4)同阶无穷大:limx→∙a(x)b(x)=C,C≠0\lim_{x\to\bullet}\frac{a(x)}{b(x)}=C,C\neq0limx→∙b(x)a(x)=C,C=0。
(5)高阶无穷大:limx→∙a(x)b(x)=∞\lim_{x\to\bullet}\frac{a(x)}{b(x)}=\inftylimx→∙b(x)a(x)=∞。
(6)低阶无穷大:limx→∙a(x)b(x)=0\lim_{x\to\bullet}\frac{a(x)}{b(x)}=0limx→∙b(x)a(x)=0。
(7)k阶无穷大:limx→∙a(x)b(x)k=C,C≠0,k>0\lim_{x\to\bullet}\frac{a(x)}{b(x)^k}=C,C\neq0,k>0limx→∙b(x)ka(x)=C,C=0,k>0,则 a(x)a(x)a(x) 是 b(x)b(x)b(x) 的 kkk 阶无穷大。这里的 kkk 代表的就是相差的量级。
2、函数极限的性质
2.1、唯一性
1、只要函数极限存在,则极限必唯一。
2.2、函数极限的存在性判断
1、函数极限是否存在的判断:
注意:函数f(x)f(x)f(x)在x=x0x=x_{0}x=x0的极限是否存在,与f(x)f(x)f(x)在x=x0x=x_{0}x=x0是否有定义无关。
首先要明确:
当 x→∞x \to \inftyx→∞ ,意味着x→+∞x \to +\inftyx→+∞且x→−∞x \to -\inftyx→−∞;
当 x→x0x \to x_{0}x→x0 ,意味着x→x0+x \to x_0^+x→x0+且x→x0+x \to x_0^+x→x0+;
由函数极限的唯一性可知,函数极限存在的充要条件是:当x→x0+x \to x_0^+x→x0+和x→x0+x \to x_0^+x→x0+时,函数f(x)f(x)f(x)的极限相等。
用超实数系的理解:x→x0+x \to x_0^+x→x0+ 和 x→x0−x \to x_0^-x→x0− 的意思就是,以 xxx 的视角,分别从左右两个方向靠近 x0x_0x0 来研究 f(x)f(x)f(x) 的极限,若在这两种情况下极限相同且为 AAA,则x→x0x \to x_{0}x→x0时,f(x)f(x)f(x)的极限存在且为AAA;若不同,则极限不存在。
2、函数极限不存在的三种情况
(1)第一种情况:不满足唯一性。
(2)第二种情况:函数极限结果为无穷大。虽然说此时极限是有结果的,可是极限依然算是不存在。
这是一种特殊的不存在,因为+∞+\infty+∞与−∞-\infty−∞属于超实数系,不属于实数系。所以在实数系的基础上研究函数极限时,结果为实数系里的常数时,才能算极限存在。
(3)只要函数在 x0x_0x0 点的左极限和右极限都为无穷大(不论是正无穷大还是负无穷大,也不论是否同时为正无穷大和负无穷大),则函数的极限就为无穷大。
(4)若函数在 x0x_0x0 点的左极限和右极限分别为无穷大和一个实数常数,则此时函数的极限属于第一种不存在。
(5)第三种情况:震荡不存在。即函数在自变量的变化过程中,极限值虽然是实数常数,但却在不断变化中,例如:limx→+∞sinx\lim_{x\to+\infty}sinxlimx→+∞sinx。
(5)所以,只有当函数极限为实数系中的常数时,函数极限才算存在。
2.3、局部有界性(函数有界性的补充)
1、若limx→∙f(x)\lim_{x\to\bullet}f(x)limx→∙f(x)存在,则x→∙x\to\bulletx→∙时,函数f(x)f(x)f(x)有界。
2、f(x)f(x)f(x)在[a,b][a,b][a,b]上为连续函数,则f(x)f(x)f(x)在[a,b][a,b][a,b]上必定有界。
3、f(x)f(x)f(x)在(a,b)(a,b)(a,b)上为连续函数,且limx→a+f(x)\lim_{x \to a^{+}}f(x)limx→a+f(x)与limx→b−f(x)\lim_{x \to b^{-}}f(x)limx→b−f(x)都存在(注意:这里的极限存在是指极限值为实数系里的常数,而不能为正无穷或负无穷),则f(x)f(x)f(x)在(a,b)(a,b)(a,b)上必定有界。
4、有界函数间的和、差、积的运算结果仍为有界函数。
2.4、局部保号性
1、局部保号性定义:当 limx→x0f(x)=A>0\lim_{x \to x_{0}} f(x) = A > 0limx→x0f(x)=A>0 时,则 AAA 的超实数域中的所有超实数都 >0>0>0 ;当 limx→x0f(x)=A<0\lim_{x \to x_{0}} f(x) = A < 0limx→x0f(x)=A<0 时,则 AAA 的超实数域中的所有超实数都 <0<0<0 。
2、注意:局部保号性有一个例外,当 limx→x0f(x)=A=0\lim_{x \to x_{0}} f(x) = A = 0limx→x0f(x)=A=0 时,是不具有局部保号性的。
3、延申:当 x→x0x \to x_{0}x→x0 ,f(x)f(x)f(x) 进入超实数域后成为超实数 aaa ,且此时 limx→x0f(x)=A\lim_{x \to x_{0}} f(x) = Alimx→x0f(x)=A ,若 a>0a>0a>0 ,则 A≥0A \geq 0A≥0 ;若 a<0a<0a<0 ,则 A≤0A \leq 0A≤0 ;若 a=0a = 0a=0 ,则 A=0A = 0A=0。
4、局部保号性对超实数正负符号的理解:
limx→x0f(x)=A\lim_{x \to x_{0}} f(x) = Alimx→x0f(x)=A 的实际意义就是 x→x0x \to x_{0}x→x0 时,f(x)→Af(x) \to Af(x)→A。
且x→x0⇔x→x0+x \to x_{0} \Leftrightarrow x \to x_0^+x→x0⇔x→x0+ 且 x→x0−x \rightarrow x_0^-x→x0− 。
而局部保号性的实质就是指:超实数的正负符号要对标于所属的标准实数的正负符号。局部保号性仅适用于标准实数非 000 的情况下:
(1)当 x0>0x_0>0x0>0,则 x0−>0x_0^->0x0−>0 ,x0+>0x_0^+>0x0+>0;当x0<0x_0<0x0<0,则 x0−<0x_0^-<0x0−<0 , x0+<0x_0^+<0x0+<0。
(2)当 x0=0x_0=0x0=0 时比较特殊,因为此时的标准实数为 000,因为 000 是不具有正负符号区别的。
(3)x→x0+x \to x_0^+x→x0+ 和 x→x0−x \to x_0^-x→x0− 表示的是从左右两个方向分别研究 x0x_0x0 ,虽然我们无法知道超实数的具体取值,但是可以得知它的符号,局部保号性就是用于研究所属标准实数不为 000 时的超实数符号:
由上可知:标准实数非 000 时,它的超实数与标准实数的正负符号相同,无论是从左右哪个方向研究。
而当标准实数为 000 时,从左研究(即 x→x0−x \to x_0^-x→x0−)超实数全为负,从右研究(即 x→x0+x \to x_0^+x→x0+)超实数全为正。可是无论哪种情况,所属超实数都是唯一的 000。也就是说,当000作为标准实数时,它的超实数有全为正和全为负两种状态。
3、函数极限的运算
在学习函数运算之前要明白一个事实:无论 f(x)f(x)f(x) 内部有多复杂,limx→∙f(x)\lim_{x\to\bullet}f(x)limx→∙f(x) 的意义是: f(x)f(x)f(x) 中所有小部分先进行运算得出总的结果后,再与limx→∙\lim_{x\to\bullet}limx→∙ 结合运算,而非先让 limx→∙\lim_{x\to\bullet}limx→∙ 作用于 f(x)f(x)f(x) 中的每一个小部分后,再计算出 f(x)f(x)f(x)。
3.1 函数极限的四则运算规则
1、拆解规则:
limx→∙f(x)=A\lim_{x\to\bullet}f(x) = Alimx→∙f(x)=A 和 limx→∙g(x)=B\lim_{x\to\bullet}g(x) = Blimx→∙g(x)=B,在自变量的同一变化过程中,f(x)f(x)f(x) 与 g(x)g(x)g(x) 加减乘除的极限,可拆解为 f(x)f(x)f(x) 的极限与 g(x)g(x)g(x) 的极限的加减乘除,当然也可以逆向还原回去。(f(x)f(x)f(x) 和 g(x)g(x)g(x) 是常数函数也适用)
2、函数极限四则运算的拆解前提:
(1)在加减法拆解中,只有当预拆解产生的一系列单个极限全都存在(即都为唯一的实数常数),才能使用函数极限四则运算进行拆解;若预拆解后产生的一系列单个极限全都不存在(也就是极限值为无穷,或不唯一),则不能拆,因为此时拆解出来的单个极限结果都是超实数,超实数是没有运算规则的,无法进行进一步运算;任何情况下,即无论预拆解产生的一系列单个极限是否全都存在,预拆解中存在的极限都可以先往外拆解。(不严谨地说,只要极限存在,即可外提)
(2)在乘除法拆解中,在加减法拆解规则的基础上,修改最后一条限制条件:任何情况下,即无论预拆解产生的一系列单个极限是否全都存在,预拆解中存在的非 000 极限都可以往外拆解,而为 000 的极限只有在预拆解产生的一系列单个极限全都存在的情况下才能往外拆解。(不严谨地说,只要极限存在且非 000,即可外提)
预拆解中分母部分的函数极限若为 000,则不能拆解。
3、由第2点可总结(非常重要):
**(1)若预拆解产生的一系列单个极限既有存在的,也有不存在的,那么原极限一定不存在。
(2)若预拆解产生的一系列单个极限全都不存在,那么原极限不一定不存在。**
4、limx→∙f(x)\lim_{x\to\bullet}f(x)limx→∙f(x) 极限中的 f(x)f(x)f(x) 可以随意做恒等变化。
5、在计算 limx→∙f(x)\lim_{x\to\bullet}f(x)limx→∙f(x) 时,f(x)f(x)f(x) 可能会很复杂,其中的任何一小部分在运算过程中都不能单独提前计算它的极限,例如:
limx→0sinxx−1x2\lim_{x\to0}\frac{\frac{\sin x}{x}-1}{x^{2}}x→0limx2xsinx−1
在计算上式时,是不允许先单独将 sinxx\frac{\sin x}{x}xsinx 的极限算出来等于 111 ,再带入使得极限为 000,这种做法是错误的。
因为,在极限式子 limx→∙f(x)\lim_{x\to\bullet}f(x)limx→∙f(x) 中,f(x)f(x)f(x) 是超实数,内部的任何一个xxx 以及含有 xxx 的式子也是超实数,超实数的实际值虽然不知道,但是绝对不会等于其所属的标准实数的值,故而不能进行等价代换。
而有一些式子,例如:
limx→0(sinxx⋅ex)\lim_{x\to0}(\frac{\sin x}{x}\cdot e^{x})x→0lim(xsinx⋅ex)
在运算过程中可以直接化为:
limx→0ex\lim_{x\to0}e^{x}x→0limex
那是因为这里的 sinxx\frac{\sin x}{x}xsinx 在预拆解情况下极限存在(极限值为一个明确的实数常数),所以可以直接通过极限的四则运算拆解出来:
limx→0(sinxx⋅ex)=limx→0ex⋅limx→0sinxx=limx→0ex⋅1=limx→0ex\lim_{x\to0}(\frac{\sin x}{x}\cdot e^{x}) = \lim_{x\to0}e^{x} \cdot \lim_{x\to0}\frac{\sin x}{x} = \lim_{x\to0}e^{x} \cdot 1 = \lim_{x\to0}e^{x}x→0lim(xsinx⋅ex)=x→0limex⋅x→0limxsinx=x→0limex⋅1=x→0limex
6、根据极限的四则运算来探究等价无穷小的等价替换实质:
有以下等价替换过程:
limx→01−cosxx2=limx→012x2x2=12\lim_{x\to0}\frac{1-\cos x}{x^{2}} = \lim_{x\to0}\frac{\frac{1}{2}x^{2}}{x^{2}} = \frac{1}{2}x→0limx21−cosx=x→0limx221x2=21
是因为有等价无穷小:
limx→012x21−cosx=1⇔1−cosx∼12x2\lim_{x\to0}\frac{\frac{1}{2}x^{2}}{1-\cos x} = 1 \Leftrightarrow 1-\cos x\sim\frac{1}{2}x^{2}x→0lim1−cosx21x2=1⇔1−cosx∼21x2
而替换的实质是:
limx→01−cosxx2=limx→01−cosxx2⋅1=limx→01−cosxx2⋅limx→012x21−cosx=limx→01−cosxx2⋅12x21−cosx=limx→012x2x2=12\lim_{x\to0}\frac{1-\cos x}{x^{2}} = \lim_{x\to0}\frac{1-\cos x}{x^{2}} \cdot 1 = \lim_{x\to0}\frac{1-\cos x}{x^{2}} \cdot \lim_{x\to0}\frac{\frac{1}{2}x^{2}}{1-\cos x} = \lim_{x\to0}\frac{1-\cos x}{x^{2}} \cdot \frac{\frac{1}{2}x^{2}}{1-\cos x} = \lim_{x\to0}\frac{\frac{1}{2}x^{2}}{x^{2}} = \frac{1}{2}x→0limx21−cosx=x→0limx21−cosx⋅1=x→0limx21−cosx⋅x→0lim1−cosx21x2=x→0limx21−cosx⋅1−cosx21x2=x→0limx221x2=21
等价替换原理:因为等价无穷小的极限为 limx→∙f(x)g(x)=1\lim_{x\to\bullet}\frac{f(x)}{g(x)} = 1limx→∙g(x)f(x)=1,故而在自变量 xxx 的同一变化过程中,这些函数极限都可作为单位 111 来使用,而又因为乘积的极限等于极限的乘积,故而可以在极限内中的乘积上产生类似于“替换”的作用。
注意事项:对于极限 limx→∙f(x)\lim_{x\to\bullet}f(x)limx→∙f(x) ,在 f(x)f(x)f(x) 中只有能以乘除的方式(±万万不行)分离出来的部分,才能够发生等价替换,因为只有这样才能与外部融进去的代表单位111的函数发生消去。
7、重要结论(常用于已知函数极限反求函数中的参数):
(1)若 limx→∙f(x)g(x)=A\lim_{x\to\bullet}\frac{f(x)}{g(x)} = Alimx→∙g(x)f(x)=A,且在自变量的同一变化过程中有 limx→∙g(x)=0\lim_{x\to\bullet}g(x) = 0limx→∙g(x)=0,则有 limx→∙f(x)=0\lim_{x\to\bullet}f(x) = 0limx→∙f(x)=0。
(2)若 limx→∙f(x)g(x)=A≠0\lim_{x\to\bullet}\frac{f(x)}{g(x)} = A \neq 0limx→∙g(x)f(x)=A=0,且在自变量的同一变化过程中有 limx→∙f(x)=0\lim_{x\to\bullet}f(x) = 0limx→∙f(x)=0,则有 limx→∙g(x)=0\lim_{x\to\bullet}g(x) = 0limx→∙g(x)=0。
总结:
函数极限存在,且函数分母部分在自变量的同一变化过程中的极限为 000,则函数分子部分在自变量的同一变化过程中的极限也为 000。
函数极限存在且不为 000,且函数分子部分在自变量的同一变化过程中的极限为 000,则函数分母部分在自变量的同一变化过程中的极限也为 000。
也就是说,只要函数极限存在且不为 000,且函数的分子(分母)部分在自变量的同一变化过程中的极限为 000,那么函数的分母(分子)部分在自变量的同一变化过程中的极限也为 000。
3.2 函数极限的计算方法
3.2.1 直接带入法
1、最常用的方法是直接带入法,即在 limx→x0f(x)\lim_{x \to x_{0}} f(x)limx→x0f(x) 中,直接将 x0x_{0}x0 代入 f(x)f(x)f(x),即可计算出函数极限。
2、直接代入法的原理:函数 f(x)f(x)f(x) 在 x=x0x = x_{0}x=x0 处连续。我们平时遇到的函数无非两种,一种是分段函数,另一种是一体化函数,由于一体化函数 f(x)f(x)f(x) 在除了无定义点的其他点上全都连续(因为无定义点是间断点),故而在一体化函数中,若 x→x0x \to x_0x→x0时的x0x_0x0 并非间断点,则可直接代入计算极限。
3、直接代入法的前提:不同于在四则运算中提前代入计算函数中的某个单个部分极限,直接代入法是同时计算所有单个部分的极限后再按照原函数 f(x)f(x)f(x) 的运算逻辑得出总的函数极限。
它的使用前提就是:按照原函数 f(x)f(x)f(x) 的运算逻辑的运算中不会出现非法情况。
3.2.2 洛必达法则
1、使用前提:
(1)极限式的格式为 limx→∙f(x)g(x)\lim_{x\to\bullet}\frac{f(x)}{g(x)}limx→∙g(x)f(x)。
(2)在使用直接代入法的情况下,limx→∙f(x)g(x)\lim_{x\to\bullet}\frac{f(x)}{g(x)}limx→∙g(x)f(x) 的极限结果为 (00)(\frac{0}{0})(00) 型或 (∞∞)(\frac{\infty}{\infty})(∞∞) 型。
(3)limx→∙f(x)g(x)\lim_{x\to\bullet}\frac{f(x)}{g(x)}limx→∙g(x)f(x) 存在或为无穷大(即:极限可以存在,也可以为特殊不存在,但一定要满足唯一性)。
(4)limx→∙f(x)\lim_{x\to\bullet}{f(x)}limx→∙f(x) 和 limx→∙g(x)\lim_{x\to\bullet}{g(x)}limx→∙g(x) 同时 →0\to 0→0 或同时 →+∞\to +\infty→+∞ 或同时 →−∞\to -\infty→−∞ (即:极限可以存在且为0,也可以为特殊不存在 ∞\infty∞,但一定要满足唯一性)。
(5)f(x)f(x)f(x) 和 g(x)g(x)g(x) 在自变量 ∙\bullet∙ 的去心邻域内可导,且处于分母位置的 g′(x)≠0g^{\prime}(x) \neq 0g′(x)=0。
2、运算法则
limx→∙f(x)g(x)=limx→∙f′(x)g′(x)=limx→∙f′′(x)g′′(x)=limx→∙f′′′(x)g′′′(x)......=A\lim_{x\to\bullet}\frac{f(x)}{g(x)} = \lim_{x\to\bullet}\frac{f^{\prime}(x)}{g^{\prime}(x)} = \lim_{x\to\bullet}\frac{f^{\prime\prime}(x)}{g^{\prime\prime}(x)} = \lim_{x\to\bullet}\frac{f^{\prime\prime\prime}(x)}{g^{\prime\prime\prime}(x)} ...... = Ax→∙limg(x)f(x)=x→∙limg′(x)f′(x)=x→∙limg′′(x)f′′(x)=x→∙limg′′′(x)f′′′(x)......=A
只要使用洛必达法则产生的极限符合洛必达法则的使用前提,就可以循环使用洛必达法则,直到得出一个实数常数,此实数常数就是原函数的极限。
3、注意
(1)若使用洛必达法则产生的 nnn 阶极限变得不存在也不为 ∞\infty∞,则此时并不代表原函数的极限不存在,而是说明此时洛必达法则不再适用,需要使用其他方法来求极限。(此处也说明了洛必达法则是有局限性的,并不是一个必定能解决问题的方法)
(2)右边存在,则左边存在;左边存在,右边不一定存在。
(3)延申:除了 (00)(\frac{0}{0})(00) 型或 (∞∞)(\frac{\infty}{\infty})(∞∞) 型,洛必达法则还可用于 (?∞)(\frac{?}{\infty})(∞?) 型,即前提条件改为:
1◯\textcircled{1}1◯ 在使用直接代入法的情况下,limx→∙f(x)g(x)\lim_{x\to\bullet}\frac{f(x)}{g(x)}limx→∙g(x)f(x) 的极限结果为 (?∞)(\frac{?}{\infty})(∞?) 型;
2◯\textcircled{2}2◯ limx→∙f(x)g(x)\lim_{x\to\bullet}\frac{f(x)}{g(x)}limx→∙g(x)f(x) 存在或为无穷大;
3◯\textcircled{3}3◯ 不管 f(x)f(x)f(x),limx→∙g(x)→+∞\lim_{x\to\bullet}{g(x)} \to +\inftylimx→∙g(x)→+∞ 或 limx→∙g(x)→−∞\lim_{x\to\bullet}{g(x)} \to -\inftylimx→∙g(x)→−∞。
4◯\textcircled{4}4◯ f(x)f(x)f(x) 和 g(x)g(x)g(x) 在自变量 ∙\bullet∙ 的去心邻域内可导,且处于分母位置的 g′(x)≠0g^{\prime}(x) \neq 0g′(x)=0。
(4)洛必达法则过程中产生的极限依然可以用等价代换使其变得更简洁。
3.2.3 泰勒公式
1、定义:函数在 x0x_0x0 处 nnn 阶可导,则在 x0x_0x0 的某个邻域内的任一点 xxx 的函数可用多项式描述为:
f(x)=f(x0)+f′(x0)x+f′′(x0)2!x2+⋯+f(n)(x0)n!xn+o((x−x0)n)f(x)=f(x_0)+f^{\prime}(x_0)x+\frac{f^{\prime\prime}(x_0)}{2!}x^{2}+\cdots+\frac{f^{(n)}(x_0)}{n!}x^{n}+o((x-x_0)^{n})f(x)=f(x0)+f′(x0)x+2!f′′(x0)x2+⋯+n!f(n)(x0)xn+o((x−x0)n)
这样的多项式叫做泰勒展开式,它由泰勒多项式+皮亚诺余项组成。
式子中最末尾的 o((x−x0)n)o((x-x_0)^{n})o((x−x0)n) 叫做皮亚诺余项,指是 (x−x0)n(x-x_0)^{n}(x−x0)n 的高阶无穷小,用于表示泰勒展开式与 f(x)f(x)f(x) 实际值的差距,所取的 xxx 与 x0x_0x0 相差越远,泰勒多项式与 f(x)f(x)f(x) 的实际值误差越大,即 o((x−x0)n)o((x-x_0)^{n})o((x−x0)n) 越大。
而不带末尾皮亚诺余项的式子就是泰勒多项式。
定义中说的是邻域内,故而就在 x0x_0x0 这个点处取得的 f(x0)f(x_0)f(x0) 也有泰勒公式。
展开的阶数 nnn 并不一定要取到底,只要在 n0n_0n0 阶内可导,则 n0n_0n0 阶以内均可展开到对应的 f(n)(x0)n!xn\frac{f^{(n)}(x_0)}{n!}x^{n}n!f(n)(x0)xn。例如 f(x)f(x)f(x) 可在 x=x0x = x_0x=x0 处 555 阶及以内均可导,则均可展开到:
f(x)=f(x0)+f′(x0)x+o((x−x0)1)f(x)=f(x_0)+f^{\prime}(x_0)x+o((x-x_0)^{1})f(x)=f(x0)+f′(x0)x+o((x−x0)1)
f(x)=f(x0)+f′(x0)x+f′′(x0)2!x2+o((x−x0)2)f(x)=f(x_0)+f^{\prime}(x_0)x+\frac{f^{\prime\prime}(x_0)}{2!}x^{2}+o((x-x_0)^{2})f(x)=f(x0)+f′(x0)x+2!f′′(x0)x2+o((x−x0)2)
f(x)=f(x0)+f′(x0)x+f′′(x0)2!x2+f′′′(x0)3!x3+o((x−x0)3)f(x)=f(x_0)+f^{\prime}(x_0)x+\frac{f^{\prime\prime}(x_0)}{2!}x^{2}+\frac{f^{\prime\prime\prime}(x_0)}{3!}x^{3}+o((x-x_0)^{3})f(x)=f(x0)+f′(x0)x+2!f′′(x0)x2+3!f′′′(x0)x3+o((x−x0)3)
f(x)=f(x0)+f′(x0)x+f′′(x0)2!x2+f′′′(x0)3!x3+f′′′′(x0)4!x4+o((x−x0)4)f(x)=f(x_0)+f^{\prime}(x_0)x+\frac{f^{\prime\prime}(x_0)}{2!}x^{2}+\frac{f^{\prime\prime\prime}(x_0)}{3!}x^{3}+\frac{f^{\prime\prime\prime\prime}(x_0)}{4!}x^{4}+o((x-x_0)^{4})f(x)=f(x0)+f′(x0)x+2!f′′(x0)x2+3!f′′′(x0)x3+4!f′′′′(x0)x4+o((x−x0)4)
f(x)=f(x0)+f′(x0)x+f′′(x0)2!x2+f′′′(x0)3!x3+f′′′′(x0)4!x4+f′′′′′(x0)5!x5+o((x−x0)5)f(x)=f(x_0)+f^{\prime}(x_0)x+\frac{f^{\prime\prime}(x_0)}{2!}x^{2}+\frac{f^{\prime\prime\prime}(x_0)}{3!}x^{3}+\frac{f^{\prime\prime\prime\prime}(x_0)}{4!}x^{4}+\frac{f^{\prime\prime\prime\prime\prime}(x_0)}{5!}x^{5}+o((x-x_0)^{5})f(x)=f(x0)+f′(x0)x+2!f′′(x0)x2+3!f′′′(x0)x3+4!f′′′′(x0)x4+5!f′′′′′(x0)x5+o((x−x0)5)
区别就是:展开的阶数 nnn 越大,则 f(x)f(x)f(x) 与泰勒展开式之间的差距越小,无穷小 o((x−x0)n)o((x-x_0)^{n})o((x−x0)n) 的阶数越高。
2、泰勒展开式中的等价无穷小:
(1)对于limx→x0f(x)\lim_{x \to x_{0}} f(x)limx→x0f(x) ,f(x)f(x)f(x) 或 f(x)f(x)f(x) 中的某一部分,若在 x0x_0x0 处 nnn 阶可导,则可将其替换为对应的泰勒展开式(因为 x→x0x\to x_0x→x0,即 xxx 在 x0x_0x0 的去心邻域内,满足前提条件)。
(2)当 x0=0x_0 = 0x0=0 时,泰勒展开式与原函数 f(x)f(x)f(x) 可产生等价无穷小:
因为:
Axn+o((x−x0)n)∼AxnAx^{n}+o((x-x_0)^{n}) \sim Ax^{n}Axn+o((x−x0)n)∼Axn
则由:
f(n)(x0)n!xn+o((x−x0)n)∼f(n)(x0)n!xn\frac{f^{(n)}(x_0)}{n!}x^{n}+o((x-x_0)^{n}) \sim \frac{f^{(n)}(x_0)}{n!}x^{n}n!f(n)(x0)xn+o((x−x0)n)∼n!f(n)(x0)xn
可得:
f(x)−(f(x0)+f′(x0)x+f′′(x0)2!x2+⋯+f(n−1)(x0)(n−1)!xn−1)∼f(n)(x0)n!xnf(x) - (f(x_0)+f^{\prime}(x_0)x+\frac{f^{\prime\prime}(x_0)}{2!}x^{2}+ \cdots +\frac{f^{(n-1)}(x_0)}{(n-1)!}x^{n-1}) \sim \frac{f^{(n)}(x_0)}{n!}x^{n}f(x)−(f(x0)+f′(x0)x+2!f′′(x0)x2+⋯+(n−1)!f(n−1)(x0)xn−1)∼n!f(n)(x0)xn
由于是等价无穷小,故而满足广义化,即 xxx 可替换为任意与 xxx 变化相同的 f(x)f(x)f(x)。
3、无穷小的运算(皮亚诺余项的运算)
设 mmm 和 nnn 为正整数,则:
(1)无穷小之间的加减:
o(xm)±o(xn)=o(xl),l=min{m,n}o(x^{m})\pm o(x^{n})=o(x^{l}), l=\operatorname*{min}\{m, n\}o(xm)±o(xn)=o(xl),l=min{m,n}
(2)无穷小之间的乘积:
o(xm)∙o(xn)=o(xm+n),xm∙o(xn)=o(xm+n)o(x^{m})\bullet o(x^{n})=o(x^{m+n}), x^{m}\bullet o(x^{n})=o(x^{m+n})o(xm)∙o(xn)=o(xm+n),xm∙o(xn)=o(xm+n)
(3)无穷小与常数的乘积:
o(xm)=o(kxm)=k∙o(xm),k≠0 且为常数o(x^m)=o(kx^m)=k\bullet o(x^m), k\neq0\text{ 且为常数}o(xm)=o(kxm)=k∙o(xm),k=0 且为常数
4、泰勒展开式在极限运算中的应用:
(1)无前提条件。
(2)AB\frac ABBA 型,使用上下同阶展开原则,即 AAA 或 BBB 的展开程度要与对应的分子或分母的次幂相同。
(3) A−BA-BA−B 型,使用幂次最低展开原则,即 AAA 和 BBB 的展开到 AAA 和 BBB 的展开式中幂次的系数第一次相异时的最低幂次为止。
(4)使用此方法的征兆:分母部分是自变量的幂次,则展开分子,因为最终要靠分母的幂次去消掉分子展开式中的尾项。
或者说在要展开的分子或分母中,有 1−f(x)、x−f(x)、f(x)−1、f(x)−x1-f(x)、x-f(x)、f(x)-1、f(x)-x1−f(x)、x−f(x)、f(x)−1、f(x)−x 的字样。
5、注意:泰勒公式是优于洛必达法则的。
3.2.4 找榜一大哥法
1、前提条件:
(1)x→0x\to 0x→0 或 x→∞x\to \inftyx→∞。
(2)函数格式为:自变量幂次多项式自变量幂次多项式\frac{自变量幂次多项式}{自变量幂次多项式}自变量幂次多项式自变量幂次多项式。
3.2.5 夹逼准则
1、规则
(1)h(x)⩽f(x)⩽g(x)h(x)\leqslant f(x)\leqslant g(x)h(x)⩽f(x)⩽g(x)。
(2)limx→∙g(x)=A,limx→∙h(x)=A\lim_{x\to\bullet}g(x)=A,\lim_{x\to\bullet} h(x)=Alimx→∙g(x)=A,limx→∙h(x)=A。
满足以上两个条件,则:limx→∙f(x)=A\lim_{x\to\bullet}f(x)=Alimx→∙f(x)=A。
2、注意:夹逼准则常用于数列极限的运算,或者在之前几种计算函数极限的方法都算不出来的情况下,最后的逃生通道。
4、函数的连续与间断
1、函数连续的定义:设函数 f(x)f(x)f(x) 在点 x0x_0x0 的某一邻域 U(x0,δ){U}(x_0,\delta)U(x0,δ) 内有定义,且有limx→∙f(x)=f(x0)\lim {x\to\bullet} f(x)=f(x_0)limx→∙f(x)=f(x0),则称函数 f(x)f(x)f(x) 在点 xxx 处连续。
2、函数存在定义:在函数极限里有:若 f(x)f(x)f(x) 在 U∘(x0,δ)\stackrel{\circ}{U}(x_0,\delta)U∘(x0,δ) 内有定义,则 limx→x0f(x)=A\lim_{x\to x_0}f(x)=Alimx→x0f(x)=A 存在。
5、对函数连续的补充讲解
1、f(x)f(x)f(x) 在 x=x0x=x_0x=x0 处连续,则有:
limΔx→0[f(x0+Δx)−f(x0)]=0⟺limΔx→0Δf(x0)=0\lim_{\Delta x\to0}[f(x_{0}+\Delta x)-f(x_{0})]=0 \Longleftrightarrow \lim_{\Delta x\to0}\Delta f(x_{0})=0Δx→0lim[f(x0+Δx)−f(x0)]=0⟺Δx→0limΔf(x0)=0
即:
可以理解为连续的实质就是:无数个大小趋近于无穷小的微元构成的。
2、对于分段函数 f(x)={x20f(x)=\begin{cases}x^{2}\\0\end{cases}f(x)={x20,有 ∣f(x)∣≤∣x2∣+∣0∣|f(x)|\leq|x^{2}|+|0|∣f(x)∣≤∣x2∣+∣0∣。
3、f(x)f(x)f(x) 在 x=x0x=x_0x=x0 处连续,但并不能推论出f(x)f(x)f(x) 在 xxx 某个邻域内的其他点 xnx_nxn 处也连续。