灰色关联分析

文章探讨了在系统分析中如何根据样本量选择不同的分析方法,如n较大时采用标准回归,n较小时采用灰色关联分析。灰色关联度是通过比较序列曲线的几何相似性来评估变量间的关联强度。此外,它也常用于综合评价,如结合AHP和Topsis方法,即便在有或无数据的情况下都能进行有效分析。文章详细阐述了灰色关联分析的步骤,包括预处理、关联度计算等,并指出关联度最大者对变量的影响也最大。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系统分析:分析变量xi对y影响大小

n大时用标准回归分析,n小用灰色关联

主成分分析-降维

对样本多少和样本有无规律都同样适用,且计算量小

基本思想:根据序列曲线几何形状的相似程度来判断关联是否紧密,曲线越接近,相应序列之间的关联度越大

应用:

一.用于系统分析

1.画统计图

 

2.确定分析序列

3.预处理:每个元素÷均值

4.计算每个子序列与母序列关联

5.定义灰色关联度

6.通过对比关联度说明结论

影响最⼤其灰⾊关联度最⼤

二.用于综合评价

层次分析(AHP):用于没有数据

Topsis:结合熵权法、有数据

灰色关联:有数据

灰色关联步骤: 

母序列选取的是虚构的是每一行的最大值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值