基于实例学习

这篇博客讨论了最简单学习形式——记忆学习在垃圾邮件检测中的应用。通过标记已知垃圾邮件并计算新邮件与这些样本的相似度,可以过滤掉包含垃圾邮件特征的邮件。这种基于实例的学习方法有助于提升过滤器的性能,使其能识别类似垃圾邮件的内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最简单的学习形式就是用记忆学习。如果用这种方法做一个垃圾邮件检测器,只需标记所有和用户标记的垃圾邮件相同的邮件 —— 这个方法不差,但肯定不是最好的。
不仅能标记和已知的垃圾邮件相同的邮件,你的垃圾邮件过滤器也要能标记类似垃圾邮件的邮件。这就需要测量两封邮件的相似性。一个(简单的)相似度测量方法是统计两封邮件包含的相同单词的数量。如果一封邮件含有许多垃圾邮件中的词,就会被标记为垃圾邮件。
这被称作基于实例学习:系统先用记忆学习案例,然后使用相似度测量推广到新的例子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值